Skip to main content
Log in

1-Hexene Double Bond Isomerization Reaction Over SO =4 Promoted NiO, Al2O3 and ZrO2 Acid Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Sulfated mixed oxides, SO =4 /Ni–Al–O and SO =4 /Zr–Al–O were evaluated for double bond isomerization (DBI) of 1-hexene using helium and hydrogen as carrier gases. The increase of temperature from 100 to 200 °C seems to favor the deprotonation pathway and contribute to increase the 1-hexene conversion for both catalysts and without regard of the carrier gas. The results indicate that temperature it is the main factor that contributes to improve both conversion and selectivity towards (cis + trans)-2-hexene, while the reductive atmosphere beneficiate only the SO =4 /Ni–Al–O catalyst performance, as hydrogen prevents this catalyst from a fast deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dunning HN (1953) Ind & Eng Chem 45:551

    Article  CAS  Google Scholar 

  2. Toba M, Miki Y, Matsui T, Harada M, Yoshimura Y (2007) Appl Catal A Gen 70:542

    CAS  Google Scholar 

  3. De Klerk A (2005) Ind Eng Chem Res 44:3887

    Article  Google Scholar 

  4. Ohff A, Burlakov VV, Rosenthal U (1996) J Mol Catal A Chem 105:103

    Article  CAS  Google Scholar 

  5. Cavell KJ, Masters AF (1986) Aust J Chem 39:1129

    CAS  Google Scholar 

  6. Ayame A, Sawada G (1989) Bull Chem Soc Jpn 62:3055

    Article  CAS  Google Scholar 

  7. Dallaman K, Buffon R (2001) J Mol Catal A Chem 172:81

    Article  Google Scholar 

  8. Chuang JY, Ying L, Ren H (2006) J Mol Catal A Chem 259:17

    Article  Google Scholar 

  9. Schmidt B (2006) J Mol Catal A Chem 254:53

    Article  CAS  Google Scholar 

  10. De Klerk A (2004) Ind Eng Chem Res 43:6325

    Article  Google Scholar 

  11. Otremba T, Tanievski M (1980) React Kinet Catal Lett 15(2):279

    Article  CAS  Google Scholar 

  12. Mäurer T, Kraushaar-Czarnetzki B (1999) J Catal 187:202

    Article  Google Scholar 

  13. Resofski G, Gáti G, Hálasz I (1985) Appl Catal 19:241

    Article  Google Scholar 

  14. Abbot J, Corma A, Wojciechowski BW (1985) J Catal 92:398

    Article  CAS  Google Scholar 

  15. Corma A (1995) Chem Rev 95:559

    Article  CAS  Google Scholar 

  16. Sohn JR, Park WC, Shin DC (2006) J Mol Catal A Chem 256:156

    Article  CAS  Google Scholar 

  17. Haag WO, Pines H (1960) J Am Chem Soc 82:2488

    Article  CAS  Google Scholar 

  18. Stepanov AG, Arzumanov SS, Luzgin MV, Ernst H, Freunde D (2005) J Catal 229(1):243

    Article  CAS  Google Scholar 

  19. Brouwer DM (1962) J Catal 1:22

    Article  CAS  Google Scholar 

  20. Kokes RJ, Dent AC (1970) Adv Catal 22:1

    Article  Google Scholar 

  21. Pater JPG, Jacobs PA, Martens JA (1999) J Catal 184:262

    Article  CAS  Google Scholar 

  22. Rosenberg DJ, Bachiller-Baeza B, Dimes TJ, Anderson JA (2003) J Phys Chem B 107:6526

    Article  CAS  Google Scholar 

  23. Hino M, Kobayashi S, Arata K (1979) J Am Chem 101:6439

    Article  CAS  Google Scholar 

  24. Shimizu K, Kounami N, Wada H, Shishido T, Hattori H (1998) Catal Lett 54:153

    Article  CAS  Google Scholar 

  25. Perez Luna M, Cosultchi A, Toledo Antonio JA, Arce Estrada EM (2005) Catal Lett 102:33

    Article  CAS  Google Scholar 

  26. Matsuda T, Fuse T, Kikuchi E (1987) J Catal 106:38

    Article  CAS  Google Scholar 

  27. Schulz-Ekloff G, Jaeger NI, Vladov C, Petrov L (1987) Appl Catal 33:73

    Article  CAS  Google Scholar 

  28. Dong YF, Wang SJ, Feng YP, Huan ACH (2006) Phys Rev B 73:045302

    Article  Google Scholar 

  29. Farcasiu D, Ghenciu A, Li JQ (1996) J Catal 158:116

    Article  CAS  Google Scholar 

  30. Hino M, Kurashige M, Matsuhashi H, Arata K (2006) Termochim Acta 44:35

    Article  Google Scholar 

  31. Kanazhevskii V, Shmachkova V, Kotsarenko N, Kolomiichuk V, Kochubei D (2006) J Struct Chem 47:860

    Article  CAS  Google Scholar 

  32. Yamaguchi T (1990) Appl Catal 61:1

    Article  CAS  Google Scholar 

  33. Pu M, Li Z-H, Gong Y-J, Wu D, Sun Y-H (2003) J Mater Sci Lett 22:955

    Article  CAS  Google Scholar 

  34. Clark MC, Subramaniam B (1996) Chem Eng Sci 51:2369

    Article  CAS  Google Scholar 

  35. Clark MC, Subramaniam B (1999) AIChE 45:1559

    Article  CAS  Google Scholar 

  36. Talukdar AK, Bhattacharyya KG, Baba T, Ono Y (2001) Appl Catal A Gen 213:239

    Article  CAS  Google Scholar 

  37. Ko AN, Wojciechowski BW (1983) Int J Chem Kinet 15:1249

    Article  CAS  Google Scholar 

  38. Yori JC, Luy JC, Parera JM (1989) Catl Today 5:493

    Article  CAS  Google Scholar 

  39. Yori JC, Luy JC, Parera JM (1989) Appl Catal 46:103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pérez-Luna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Luna, M., Cosultchi, A., Toledo-Antonio, J.A. et al. 1-Hexene Double Bond Isomerization Reaction Over SO =4 Promoted NiO, Al2O3 and ZrO2 Acid Catalysts. Catal Lett 128, 290–296 (2009). https://doi.org/10.1007/s10562-008-9714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9714-z

Keywords

Navigation