Catalysis Letters

, 127:312 | Cite as

Effect of Calcination Temperature on Properties of Eggshell Ni/MgO–Al2O3 Catalyst for Partial Oxidation of Methane to Syngas

  • Yejun Qiu
  • Jixiang Chen
  • Jiyan Zhang


The effect of calcination temperature on the properties of eggshell Ni/MgO–Al2O3 catalysts was studied. Catalyst deactivation was also investigated. It is found that higher calcination temperature contributes to lower surface area, wider pore, and larger Ni crystallites. Small Ni crystallites and large pores favor the catalyst performance. Catalyst deactivation is due to the formation of NiO–MgO solid solution and/or NiAl2O4, phase transformation, and sintering.


Nickel catalyst Eggshell catalyst Partial oxidation of methane Syngas Calcination temperature 


  1. 1.
    Ashcroft AT, Cheetham AK, Foord JS, Green MLH, Grey CP, Murrell AJ, Vernon PDF (1990) Nature 344:319CrossRefGoogle Scholar
  2. 2.
    Zhang YH, Xiong GX, Sheng SS, Yang WS (2000) Catal Today 63:517CrossRefGoogle Scholar
  3. 3.
    Choudhary VR, Uphade BS, Mamman AS (1995) Catal Lett 32:387CrossRefGoogle Scholar
  4. 4.
    Qiu YJ, Chen JX, Zhang JY (2007) Front Chem Eng China 1:167CrossRefGoogle Scholar
  5. 5.
    Requies J, Cabrero MA, Barrio VL, Cambra JF, Güemez MB, Arias PL, Parola VL, Peña MA, Fierro JLG (2006) Catal Today 116:304CrossRefGoogle Scholar
  6. 6.
    Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB (2008) Int J Hydrogen Energy 33:2036CrossRefGoogle Scholar
  7. 7.
    Koo KY, Roh HS, YTc Seo, Seo DJ, Yoon WL, Park SB (2008) Appl Catal A 340:183CrossRefGoogle Scholar
  8. 8.
    Qiu YJ, Chen JX, Zhang JY React Kinet Catal Lett (accepted for publication)Google Scholar
  9. 9.
    Hickman DH, Schimdt LD (1992) J Catal 138:267CrossRefGoogle Scholar
  10. 10.
    Choudary VR, Mamman AS, Sansare SD (1992) Angew Chem Int Ed Engl 31:1189CrossRefGoogle Scholar
  11. 11.
    Qiu YJ, Chen JX, Zhang JY (2007) Catal Commun 8:508CrossRefGoogle Scholar
  12. 12.
    Song YQ, He DH, Xu BQ (2008) Appl Catal A 337:19CrossRefGoogle Scholar
  13. 13.
    Utaka T, Al-Drees SA, Ueda J, Iwasa Y, Takeguchi T, Kikuchi R, Eguchi K (2003) Appl Catal A 247:125CrossRefGoogle Scholar
  14. 14.
    Andryushkova OV, Kirichenko OA, Ushakov VA, Poluboyarov VA (1997) Solid State Ion 101–103:647Google Scholar
  15. 15.
    Johnson MFL (1990) J Catal 123:245CrossRefGoogle Scholar
  16. 16.
    Burtin P, Brunelle JP, Pijolat M, Soustelle M (1987) Appl Catal 34:225CrossRefGoogle Scholar
  17. 17.
    Burtin P, Brunelle JP, Pijolat M, Soustelle M (1987) Appl Catal 34:239CrossRefGoogle Scholar
  18. 18.
    Sehested J, Gelten JAP, Remediakis IN, Bengaard H, Nørskov JK (2004) J Catal 223:432CrossRefGoogle Scholar
  19. 19.
    Schulze K, Makowski W, Chyży R, Dziembaj R, Geismar G (2001) Appl Clay Sci 18:59CrossRefGoogle Scholar
  20. 20.
    Nurunnabi M, Mukainakano Y, Kado S, Miyazawa T, Okumura K, Miyao T, Naito S, Suzuki K, Fujimoto KI, Kunimori K, Tomishige K (2006) Appl Catal A 308:1CrossRefGoogle Scholar
  21. 21.
    Wang SB, Lu GQM (1998) Appl Catal B 16:269CrossRefGoogle Scholar
  22. 22.
    Dissanayake D, Rosynek MO, Kharras KCC, Lunsford JH (1991) J Catal 132:117CrossRefGoogle Scholar
  23. 23.
    Zhang ZL, Verykios XE (1994) Catal Today 21:589CrossRefGoogle Scholar
  24. 24.
    Chen L, Lua Y, Hong Q, Lin J, Dautzenberg FM (2005) Appl Catal A 292:295CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Catalysis Science and Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Department of Material Science and EngineeringHarbin Institute of Technology, Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations