Advertisement

Catalysis Letters

, Volume 127, Issue 1–2, pp 25–32 | Cite as

Gas Phase Hydrogenation of m-Dinitrobenzene over Alumina Supported Au and Au–Ni Alloy

  • Fernando Cárdenas-Lizana
  • Santiago Gómez-Quero
  • Mark A. Keane
Article

Abstract

We report, for the first time, 100% selectivity in the continuous gas phase hydrogenation of m-dinitrobenzene to m-nitroaniline (m-NAN) over Au/Al2O3. The synthesis and application of an alumina supported Au–Ni alloy is also described where alloy formation is demonstrated by XRD, diffuse reflectance UV–Vis and HRTEM analyses. Under the same reaction conditions, Au/Al2O3 delivered a higher (by close to an order of magnitude) hydrogenation rate compared with the alloy. Au–Ni/Al2O3 promoted the formation of both m-NAN and m-phenylenediamine, i.e. partial and complete hydrogenation: the results are consistent with a stepwise reduction mechanism.

Keywords

Selective hydrogenation m-dinitrobenzene Au/Al2O3 Au–Ni/Al2O3 Supported alloy 

Notes

Acknowledgements

This work was financially supported by EPSRC through Grant 0231 110525; the authors are grateful to Dr. C.J. Baddeley and Mr. R. Blackley for their contribution to the TEM analysis.

References

  1. 1.
    Vogt PF, Gerulis JJ (2005) Ullmann’s encyclopedia of industrial chemistry. Aromatic amines. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  2. 2.
    Wang XD, Liang MH, Zhang JL, Wang Y (2007) Curr Org Chem 11:299CrossRefGoogle Scholar
  3. 3.
    Westerterp KR, Molga EJ, van Gelder KB (1997) Chem Eng Process 36:17CrossRefGoogle Scholar
  4. 4.
    Vishwanathan V, Jayasri V, Basha PM, Mahata N, Sikhwivhilu LM, Coville NJ (2008) Catal Commun 9:453CrossRefGoogle Scholar
  5. 5.
    Liu YX, Chen JX, Zhang JY (2007) Chin J Chem Eng 15:63CrossRefGoogle Scholar
  6. 6.
    Telkar MM, Nadgeri JM, Rode CV, Chaudhari RV (2005) Appl Catal A Gen 295:23CrossRefGoogle Scholar
  7. 7.
    Chen Y, Qiu J, Wang X, Xiu J (2006) J Catal 242:227CrossRefGoogle Scholar
  8. 8.
    Corma A, Serna P (2006) Science 313:332CrossRefGoogle Scholar
  9. 9.
    He D, Shi H, Wu Y, Xu B-Q (2007) Green Chem 9:849CrossRefGoogle Scholar
  10. 10.
    Claus P (2005) Appl Catal A Gen 291:222CrossRefGoogle Scholar
  11. 11.
    Boronat M, Concepción P, Corma A, González S, Illas F, Serna P (2007) J Am Chem Soc 129:16230CrossRefGoogle Scholar
  12. 12.
    Cárdenas-Lizana F, Gómez-Quero S, Keane MA (2008) ChemSusChem 1:215CrossRefGoogle Scholar
  13. 13.
    Cárdenas-Lizana F, Gómez-Quero S, Keane MA (2008) Catal Commun 9:475CrossRefGoogle Scholar
  14. 14.
    Joseph T, Kumar KV, Ramaswamy AV, Halligudi SB (2007) Catal Commun 8:629CrossRefGoogle Scholar
  15. 15.
    Hutchings GJ (2008) Chem Commun 1148Google Scholar
  16. 16.
    Edwards JK, Carsley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Faraday Discuss 138:225CrossRefGoogle Scholar
  17. 17.
    Pârvulescu VI, Pârvulescu V, Endruschat U, Filoti G, Wagner FE, Kübel C, Richards R (2006) Chem Eur 12:2343CrossRefGoogle Scholar
  18. 18.
    Pawelec B, Venezia AM, La Parola V, Thomas S, Fierro JLG (2005) Appl Catal A Gen 283:165CrossRefGoogle Scholar
  19. 19.
    Molenbroek AM, Nørskov JK (2001) J Phys Chem B 105:5450CrossRefGoogle Scholar
  20. 20.
    Triantafyllopoulos NC, Neophytides SG (2006) J Catal 239:187CrossRefGoogle Scholar
  21. 21.
    Chin Y-H, King DL, Roh H-S, Wang Y, Heald SM (2006) J Catal 244:153CrossRefGoogle Scholar
  22. 22.
    Yuan G, Louis C, Delannoy L, Keane MA (2007) J Catal 247:256CrossRefGoogle Scholar
  23. 23.
    Reichert H, Schöps A, Ramsteiner IB, Bugaev VN, Shchyglo O, Udyansky A, Dosch H, Asta M, Drautz R, Honkimäki V (2005) Phys Rev Lett 95:235703CrossRefGoogle Scholar
  24. 24.
    Cárdenas-Lizana F, Gómez-Quero S, Keane MA (2008) Appl Catal A Gen 334:199CrossRefGoogle Scholar
  25. 25.
    Togasaki N, Okinaka Y, Homma T, Osaka T (2005) Electrochimica Acta 51:882CrossRefGoogle Scholar
  26. 26.
    Tavoularis G, Keane MA (1999) J Chem Technol Biotechnol 74:60CrossRefGoogle Scholar
  27. 27.
    Guzman J, Gates BC (2003) J Phys Chem B 107:2242CrossRefGoogle Scholar
  28. 28.
    Bus E, Prins R, van Bokhoven JA (2007) Phys Chem Chem Phys 9:3312CrossRefGoogle Scholar
  29. 29.
    Gluhoi AC, Bogdanchikova N, Nieuwenhuys BE (2005) J Catal 232:96CrossRefGoogle Scholar
  30. 30.
    Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, LondonGoogle Scholar
  31. 31.
    Zhao F, Fujita S-I, Sun J, Ikushima Y, Arai M (2004) Catal Today 98:523CrossRefGoogle Scholar
  32. 32.
    Khilnani VL, Chandalia SB (2001) Org Process Res Dev 5:263CrossRefGoogle Scholar
  33. 33.
    Zhao S, Liang H, Zhou Y (2007) Catal Commun 8:1305CrossRefGoogle Scholar
  34. 34.
    Barbier J (1997) Handbook of heterogeneous catalysis. Redox methods for preparation of bimetallic catalysts. VCH Verlagsgesellschaft mbH, Weinheim (Germany)Google Scholar
  35. 35.
    Li Z, Deng Y, Wu Y, Shen B, Hu W (2007) J Mater Sci 42:9234CrossRefGoogle Scholar
  36. 36.
    Mulvaney P (1996) Langmuir 12:788CrossRefGoogle Scholar
  37. 37.
    Pawelec B, Venezia AM, La Parola V, Cano-Serrano E, Campos-Martin JM, Fierro JLG (2005) Appl Surf Sci 242:380CrossRefGoogle Scholar
  38. 38.
    Vasil’kov AYu, Nikolaev SA, Smirnov VV, Naumkin AV, Volkova IO, Podshibikhina VL (2007) Mendeleev Commun 17:268CrossRefGoogle Scholar
  39. 39.
    Papoutsis A, Kokkinidis G (1994) J Electroanal Chem 371:231CrossRefGoogle Scholar
  40. 40.
    Bailie JE, Abdullah HA, Anderson JA, Rochester CH, Richardson NV, Hodge N, Zhang JG, Burrows A, Kiely CJ, Hutchings GJ (2001) Phys Chem Chem Phys 3:4113CrossRefGoogle Scholar
  41. 41.
    Claus P, Brückner A, Mohr C, Hofmeister H (2000) J Am Chem Soc 122:11430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fernando Cárdenas-Lizana
    • 1
  • Santiago Gómez-Quero
    • 1
  • Mark A. Keane
    • 1
  1. 1.Chemical Engineering, School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghScotland, UK

Personalised recommendations