Catalysis Letters

, Volume 127, Issue 1–2, pp 75–82 | Cite as

Titanium-Doped Solid Core-Mesoporous Shell Silica Particles: Synthesis and Catalytic Properties in Selective Oxidation Reactions

  • Marina V. Barmatova
  • Irina D. Ivanchikova
  • Oxana A. Kholdeeva
  • Alexander N. Shmakov
  • Vladimir I. Zaikovskii
  • Maxim S. Mel’gunov


Near monodisperse spherical particles composed of a nonporous silica core covered by a Ti-doped hexagonally arranged mesoporous silica shell, Ti-SCMS, as well as spherical submicron-size particles of Ti-MCM-41, have been synthesized for the first time and characterized by elemental analysis, N2 adsorption, XRD, TEM and DR-UV spectroscopy. The mesoporous Ti,Si-shell has a thickness of about 45 nm and incorporates isolated Ti centers in tetrahedral coordination. Catalytic properties of Ti-SCMS and Ti-MCM-41 have been studied in selective oxidation of three representative bulky organic substrates, 2,3,6-trimethylphenol, methyl phenyl sulfide and caryophyllene, with aqueous H2O2 in MeCN medium. Ti-SCMS appeared to be more active and selective in the H2O2-based selective oxidation reactions compared to Ti-MCM-41, thus demonstrating an advantage of conducting a catalytic process in a thin mesoporous Ti,Si-shell.

Graphical Abstract

Near monodisperse spherical silica particles with a solid inert core covered by a well-ordered mesoporous shell, containing site-isolated Ti centers, have been synthesized, characterised and found to be highly active in selective oxidations with H2O2.


Core-shell structure Monodisperse silica particles Site-isolated Ti centers Selective oxidation H2O2 



The work was partially supported by the Russian Foundation for Basic Research (grants 06-03-08102 and 05-03-34760).


  1. 1.
    Stöber W, Fink A, Bohn E (1968) J Coll Int Sci 26:62CrossRefGoogle Scholar
  2. 2.
    Kresge CT, Leonowicz EM, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefGoogle Scholar
  3. 3.
    Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 38:56CrossRefGoogle Scholar
  4. 4.
    Stein A, Melde BJ, Shroden RC (2000) Adv Mater 12:1403CrossRefGoogle Scholar
  5. 5.
    Sayari A, Hamoudi S (2001) Chem Mater 13:3151CrossRefGoogle Scholar
  6. 6.
    Lin H-P, Mou C-Y (2002) Acc Chem Res 35:927CrossRefGoogle Scholar
  7. 7.
    Gallis KW, Araujo JT, Duff KJ, Moore JG, Landry CC (1999) Adv Mater 11:1452CrossRefGoogle Scholar
  8. 8.
    Boissiere C, Kummel M, Persin M, Larbot A, Prouzet E (2001) Adv Funct Mater 11:139CrossRefGoogle Scholar
  9. 9.
    Joannopoulos ID, Villeneuve PR, Fun S (1997) Nature 386:143CrossRefGoogle Scholar
  10. 10.
    Buranda T, Jones GM, Nolan JP, Keij J, Lopez GP, Sklar LA (1999) J Phys Chem B 103:3399CrossRefGoogle Scholar
  11. 11.
    Yoon SB, Kim JY, Kim JH, Park YJ, Yoon KR, Park SK, Yu JS (2007) J Mater Chem 17:1758CrossRefGoogle Scholar
  12. 12.
    Thomas JM, Raja R (2006) Topics Catal 40:3CrossRefGoogle Scholar
  13. 13.
    Corma A, Navarro MT, Perez-Pariente J (1994) J Chem Soc Chem Commun 147Google Scholar
  14. 14.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  15. 15.
    Tanev PT, Chibwe M, Pinnnavaia TJ (1994) Nature 368:321CrossRefGoogle Scholar
  16. 16.
    Shan Z, Jansen JC, Marchese L, Maschmeyer T (2001) Micropor Mesopor Mater 48:181CrossRefGoogle Scholar
  17. 17.
    Kholdeeva OA, Mel’gunov MS, Shmakov AN, Trukhan NN, Kriventsov VV, Zaikovskii VI, Romannikov VN, Malyshev ME (2004) Catal Today 91–92:205CrossRefGoogle Scholar
  18. 18.
    Gontier S, Tuel A (1995) J Catal 157:124CrossRefGoogle Scholar
  19. 19.
    Blasco T, Corma A, Navarro MT, Peres Pariente J (1995) J Catal 156:65CrossRefGoogle Scholar
  20. 20.
    Koyano KA, Tatsumi T (1997) Micropor Mater 10:259CrossRefGoogle Scholar
  21. 21.
    Laha SC, Kumar R (2002) Micropor Mesopor Mater 53:163CrossRefGoogle Scholar
  22. 22.
    Zhang WH, Lu JQ, Han B, Li MJ, Xiu JH, Ying PL, Li C (2002) Chem Mater 14:3413CrossRefGoogle Scholar
  23. 23.
    Kholdeeva OA, Derevyankin AY, Shmakov AN, Trukhan NN, Paukshtis EA, Tuel A, Romannikov VN (2000) J Mol Catal A 158:417CrossRefGoogle Scholar
  24. 24.
    Trukhan NN, Romannikov VN, Paukshtis EA, Shmakov AN, Kholdeeva OA (2001) J Catal 202:110CrossRefGoogle Scholar
  25. 25.
    Buchel G, Grun M, Unger KK, Matsumoto A, Tsutsumi K (1998) Supramol Sci 5:253CrossRefGoogle Scholar
  26. 26.
    Fenelonov VB, Romannikov VN, Derevyankin AYu (1999) Micropor Mesopor Mater 28:57CrossRefGoogle Scholar
  27. 27.
    Kruck M, Jarroniec M, Sayari A (1997) Langmuir 13:6267CrossRefGoogle Scholar
  28. 28.
    Selvam P, Bhatia SK, Sonwane CG (2001) Ind Eng Chem Res 40:3237CrossRefGoogle Scholar
  29. 29.
    Marchese L, Gianotti E, Delarocca V, Maschmeyer T, Rey F, Coluccia S, Thomas JM (1999) Phys Chem Chem Phys 1:585CrossRefGoogle Scholar
  30. 30.
    Ratnasamy P, Srinivas D, Knozinger H (2004) Adv Catal 48:1CrossRefGoogle Scholar
  31. 31.
    Cai Q, Luo ZS, Pang WQ, Fan YW, Chen XH, Cui FZ (2001) Chem Mater 13:201Google Scholar
  32. 32.
    Nga JBS, Vasiliev PO, Bergström L (2008) Micropor Mesopor Mater 112:589CrossRefGoogle Scholar
  33. 33.
    Bonrath W, Eggersdorfer M, Netscher T (2007) Catal Today 121:45CrossRefGoogle Scholar
  34. 34.
    Rules and Regulations: title 21—Food and drugs, food additives, synthetic flavoring substances and adjuvants. Food Drug Administration Washington, DC, USA, 95(38) (1973) 12913Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marina V. Barmatova
    • 1
  • Irina D. Ivanchikova
    • 1
  • Oxana A. Kholdeeva
    • 1
  • Alexander N. Shmakov
    • 1
  • Vladimir I. Zaikovskii
    • 1
  • Maxim S. Mel’gunov
    • 1
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations