Catalysis Letters

, Volume 125, Issue 3–4, pp 169–176 | Cite as

Gold-Catalyzed Aerobic Oxidation of Benzyl Alcohol: Effect of Gold Particle Size on Activity and Selectivity in Different Solvents

  • Peter Haider
  • Bertram Kimmerle
  • Frank Krumeich
  • Wolfgang Kleist
  • Jan-Dierk Grunwaldt
  • Alfons Baiker


The effect of the size of gold particles deposited on CeO2 and TiO2 supports on their catalytic behavior in the aerobic oxidation of benzyl alcohol in different solvents (mesitylene, toluene, and supercritical carbon dioxide) has been investigated. The size of supported gold particles deposited via a colloidal route was in the range 1.3–11.3 nm, as determined by means of EXAFS and HAADF-STEM measurements. The catalytic performance of the supported gold catalysts in the different solvents revealed a significant effect of the gold particle size. Optimal activity was observed for catalysts with medium particle size (ca. 6.9 nm) whereas smaller and bigger particles showed inferior activity. Identical trends for the activity–particle size relationship were found using Au/CeO2 and Au/TiO2 for the reaction at atmospheric pressure in conventional solvents (mesitylene, toluene) as well as under supercritical conditions (scCO2). Selectivity to benzaldehyde was only weakly affected by the gold particle size and mainly depended on reaction conditions. In supercritical CO2 (scCO2) selectivity was higher than in the conventional solvents under atmospheric pressure. All catalysts tested with particle sizes ranging from 1.3 to 11.3 nm showed excellent selectivity of 99% or higher under supercritical conditions.


Gold catalyst Particle size effect Benzyl alcohol Aerobic oxidation Supercritical CO2 Gold colloids 



Electron microscopy was performed at the EMEZ (ETH Zurich). ANKA (Forschungszentrum Karlsruhe, Germany) is acknowledged for providing beamtime for the fluorescence XAS investigations and S. Mangold (ANKA) and S. Marx (ETH Zurich) for help and support during beamtime. The work at the synchrotron radiation source was supported by the European Community—Research Infrastructure Action under the FP6 “Structuring the European Research Area” program (through the Integrated Infrastructure Initiative “Integrating Activity on Synchrotron and Free Electron Laser Science”, Contract RII3-CT-2004-506008).


  1. 1.
    Hunt LB (1976) Gold Bull 9:134Google Scholar
  2. 2.
    Libavius A (1597) Alchemia Andreae Libavii, Frankfurt, p 406Google Scholar
  3. 3.
    Faraday M (1857) Philos Trans R Soc Lond 147:145CrossRefGoogle Scholar
  4. 4.
    Moores A, Goettmann F (2006) New J Chem 30:1121CrossRefGoogle Scholar
  5. 5.
    Liz-Marzan LM (2006) Langmuir 22:32CrossRefGoogle Scholar
  6. 6.
    Duff DG, Baiker A, Edwards PP (1993) Langmuir 9:2301CrossRefGoogle Scholar
  7. 7.
    Porta F, Prati L, Rossi M, Scari G (2002) J Catal 211:464Google Scholar
  8. 8.
    Liu YL, Male KB, Bouvrette P, Luong JHT (2003) Chem Mater 15:4172CrossRefGoogle Scholar
  9. 9.
    Shimizu T, Teranishi T, Hasegawa S, Miyake M (2003) J Phys Chem B 107:2719CrossRefGoogle Scholar
  10. 10.
    Jorgensen JM, Erlacher K, Pedersen JS, Gothelf KV (2005) Langmuir 21:10320CrossRefGoogle Scholar
  11. 11.
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630CrossRefGoogle Scholar
  12. 12.
    Daniel MC, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  13. 13.
    Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896CrossRefGoogle Scholar
  14. 14.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113CrossRefGoogle Scholar
  15. 15.
    Janssens TVW, Carlsson A, Puig-Molina A, Clausen BS (2006) J Catal 240:108CrossRefGoogle Scholar
  16. 16.
    Kiss AM, Švec M, Berkó A (2006) Surf Sci 600:3352CrossRefGoogle Scholar
  17. 17.
    Xu Y, Mavrikakis M (2003) J Phys Chem B 107:9298CrossRefGoogle Scholar
  18. 18.
    Somorjai GA (1976) Acc Chem Res 9:248CrossRefGoogle Scholar
  19. 19.
    Somorjai GA, Rioux RM (2005) Catal Tod 100:201CrossRefGoogle Scholar
  20. 20.
    Baiker A, Dollenmeier P, He R, Wokaun A (1986) J Catal 100:345CrossRefGoogle Scholar
  21. 21.
    Baiker A, Monti D (1985) J Catal 91:361CrossRefGoogle Scholar
  22. 22.
    Davis SM, Zaera F, Somorjai GA (1982) J Am Chem Soc 104:7453CrossRefGoogle Scholar
  23. 23.
    Lenzsolomun P, Goodman DW (1994) Langmuir 10:172CrossRefGoogle Scholar
  24. 24.
    Mohr C, Hofmeister H, Radnik J, Claus P (2003) J Am Chem Soc 125:1905CrossRefGoogle Scholar
  25. 25.
    Claus P, Bruckner A, Mohr C, Hofmeister H (2000) J Am Chem Soc 122:11430CrossRefGoogle Scholar
  26. 26.
    Lu JQ, Zhang XM, Bravo-Suarez JJ, Bando KK, Fujitani T, Oyama ST (2007) J Catal 250:350CrossRefGoogle Scholar
  27. 27.
    Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2005) J Catal 236:69CrossRefGoogle Scholar
  28. 28.
    Van Hardeveld R, Hartog F (1969) Surf Sci 15:189CrossRefGoogle Scholar
  29. 29.
    Van Hardeveld R, Van Montfoort A (1966) Surf Sci 4:396CrossRefGoogle Scholar
  30. 30.
    Hansen TW, Hansen PL, Dahl S, Jacobsen CJH (2002) Catal Lett 84:7CrossRefGoogle Scholar
  31. 31.
    Jacobsen CJH, Dahl S, Hansen PL, Tornqvist E, Jensen L, Topsøe H, Prip DV, Møenshaug PB, Chorkendorff I (2000) J Mol Cat A Chem 163:19CrossRefGoogle Scholar
  32. 32.
    Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163CrossRefGoogle Scholar
  33. 33.
    Haruta M (1997) Catal Tod 36:153CrossRefGoogle Scholar
  34. 34.
    Haruta M, Date M (2001) Appl Cat A Gen 222:427CrossRefGoogle Scholar
  35. 35.
    Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232CrossRefGoogle Scholar
  36. 36.
    Mavrikakis M, Stoltze P, Nørskov JK (2000) Catal Lett 64:101CrossRefGoogle Scholar
  37. 37.
    Remediakis IN, Lopez N, Nørskov JK (2005) Appl Cat A Gen 291:13CrossRefGoogle Scholar
  38. 38.
    Grisel R, Weststrate KJ, Gluhoi A, Nieuwenhuys BE (2002) Gold Bull 35:39Google Scholar
  39. 39.
    Bond GC, Thompson DT (2000) Gold Bull 33:41Google Scholar
  40. 40.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
  41. 41.
    Yoon B, Hakkinen H, Landman U, Worz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Science 307:403CrossRefGoogle Scholar
  42. 42.
    Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Nano Tod 2:14CrossRefGoogle Scholar
  43. 43.
    Kameoka S, Tsai AP (2008) Catal Lett 121:337CrossRefGoogle Scholar
  44. 44.
    Xu CX, Su JX, Xu XH, Liu PP, Zhao HJ, Tian F, Ding Y (2007) J Am Chem Soc 129:42CrossRefGoogle Scholar
  45. 45.
    Zhu BL, Angelici RJ (2006) J Am Chem Soc 128:14460CrossRefGoogle Scholar
  46. 46.
    Raveendran P, Wallen SL (2003) J Phys Chem B 107:1473CrossRefGoogle Scholar
  47. 47.
    Bell PW, Thote AJ, Park Y, Gupta RB, Roberts CB (2003) Ind Eng Chem Res 42:6280CrossRefGoogle Scholar
  48. 48.
    Raveendran P, Ikushima Y, Wallen SL (2005) Acc Chem Res 38:478CrossRefGoogle Scholar
  49. 49.
    Renault B, Cloutet E, Cramail H, Tassaing T, Besnard M (2007) J Phys Chem A 111:4181CrossRefGoogle Scholar
  50. 50.
    Saharay M, Balasubramanian S (2006) J Phys Chem B 110:3782CrossRefGoogle Scholar
  51. 51.
    Temtem M, Casimiro T, Santos AG, Macedo AL, Cabrita EJ, Aguiar-Ricardo A (2007) J Phys Chem B 111:1318CrossRefGoogle Scholar
  52. 52.
    Baiker A (1999) Chem Rev 99:453CrossRefGoogle Scholar
  53. 53.
    Grunwaldt JD, Wandeler R, Baiker A (2003) Cat Rev Sci Eng 45:1CrossRefGoogle Scholar
  54. 54.
    Subramaniam B (2001) Appl Cat A: Gen 212:199CrossRefGoogle Scholar
  55. 55.
    Kimmerle B, Grunwaldt JD, Baiker A (2007) Top Catal 44:285CrossRefGoogle Scholar
  56. 56.
    Grunwaldt JD, Kiener C, Wögerbauer C, Baiker A (1999) J Catal 181:223CrossRefGoogle Scholar
  57. 57.
    Abad A, Concepción P, Corma A, García H (2005) Angew Chem Int Ed 44:4066CrossRefGoogle Scholar
  58. 58.
    Enache DI, Knight DW, Hutchings GJ (2005) Catal Lett 103:43CrossRefGoogle Scholar
  59. 59.
    Trimm DL (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley VCH, Weinheim, 1263 p Google Scholar
  60. 60.
    Hannemann S, Casapu M, Grunwaldt JD, Haider P, Trussel P, Baiker A, Welter E (2007) J Synch Rad 14:345CrossRefGoogle Scholar
  61. 61.
    Ravel B, Newville M (2005) J Synch Rad 12:537CrossRefGoogle Scholar
  62. 62.
    Grunwaldt JD, Maciejewski M, Becker OS, Fabrizioli P, Baiker A (1999) J Catal 186:458CrossRefGoogle Scholar
  63. 63.
    Hoffman A (1930) J Am Chem Soc 52:2995CrossRefGoogle Scholar
  64. 64.
    Vullo WJ (1968) J Org Chem 33:3665CrossRefGoogle Scholar
  65. 65.
    Zheng NF, Stucky GD (2007) Chem Commun 37:3862CrossRefGoogle Scholar
  66. 66.
    Tsunoyama H, Sakurai H, Tsukuda T (2006) Chem Phys Lett 429:528CrossRefGoogle Scholar
  67. 67.
    Comotti M, Della Pina C, Matarrese R, Rossi M (2004) Angew Chem Int Ed 43:5812CrossRefGoogle Scholar
  68. 68.
    Porta F, Prati L, Rossi M, Coluccia S, Martra G (2000) Catal Tod 61:165CrossRefGoogle Scholar
  69. 69.
    Haider P, Baiker A (2007) J Catal 248:175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Peter Haider
    • 1
  • Bertram Kimmerle
    • 1
  • Frank Krumeich
    • 1
  • Wolfgang Kleist
    • 1
  • Jan-Dierk Grunwaldt
    • 1
    • 2
  • Alfons Baiker
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH Zürich, Hönggerberg, HCIZurichSwitzerland
  2. 2.Department of Chemical and BioengineeringTechnical University of DenmarkLyngbyDenmark

Personalised recommendations