Advertisement

Catalysis Letters

, Volume 125, Issue 3–4, pp 380–385 | Cite as

High Selectivity Production of Propylene from n-Butene: Thermodynamic and Experimental Study Using a Shape Selective Zeolite Catalyst

  • Xiaoping Tang
  • Huaqun Zhou
  • Weizhong Qian
  • Dezheng Wang
  • Yong Jin
  • Fei Wei
Article

Abstract

Propylene production by n-butene catalytic cracking was studied. Thermodynamic analysis and experimental results showed that a shape-selective catalyst, SAPO-34, with a small pore diameter and weak external acidic sites, can increase the propylene yield and selectivity to 48% and 66%, respectively, from the values of 31% and 36% over a ZSM-5 zeolite by inhibiting the formation of isobutene and other hydrocarbons whose dynamic diameters are larger than isobutene. The optimal temperature for the maximum equilibrium yield of propylene decreases from 600 to 550 °C. The effect of temperature, weight hourly space velocity and time-on-stream in the n-butene cracking process were also studied.

Keywords

n-Butene Catalytic cracking Propylene Shape-selective 

Notes

Acknowledgment

This work is supported by the Natural Science Foundation of China (No. 20236020).

References

  1. 1.
    Corma A, Melo FV, Sauvanaud L, Ortega F (2005) Catal Today 699:107–108Google Scholar
  2. 2.
  3. 3.
    Kogan SB, Herskowitz M (2001) Catal Commun 2:179CrossRefGoogle Scholar
  4. 4.
    Zhao TS, Takemoto T, Tsubaki N (2006) Catal Commun 7:647CrossRefGoogle Scholar
  5. 5.
    Schwab P, Schulz R, Schulz M (2000) US Patent 6,166,279Google Scholar
  6. 6.
    Plotkin JS (2005) Catal Today 106:10CrossRefGoogle Scholar
  7. 7.
    Lu JY, Zhao Z, Xu CM (2006) Catal Lett 109:65CrossRefGoogle Scholar
  8. 8.
    Zhu XX, Liu SL, Song YQ (2005) Catal Lett 103:201CrossRefGoogle Scholar
  9. 9.
    Zhu XX, Liu SL, Song YQ (2005) Appl Catal A:Gen 290:191CrossRefGoogle Scholar
  10. 10.
    Zhang LJ, Xu CM, Gao JS (2005) Chin Petrochem Technol 34:714Google Scholar
  11. 11.
    Vora BV, Marker TL, Barger PT (2000) US Patent 6,049,017 Google Scholar
  12. 12.
    Liu JT, Xie ZK, Xu CM (2005) Chin Petrol Proc Petrochem 36:44Google Scholar
  13. 13.
    Zhu XX, Song YQ, Li HB (2005) Chin J Catal 26:110Google Scholar
  14. 14.
    Wang XQ (2003) Chin Petro Petrochem Today 11:5Google Scholar
  15. 15.
    Zhu XX, Liu SL, Song YQ, Xu LY (2005) Appl Catal A:Gen 288:134–142CrossRefGoogle Scholar
  16. 16.
    Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) US Patent 4,440,871Google Scholar
  17. 17.
    Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R (2002) Microporous Mesoporous Mater 53:97CrossRefGoogle Scholar
  18. 18.
    Vonka P, Leitner J (1995) Calphad 19:25CrossRefGoogle Scholar
  19. 19.
    Derevich IV, Ermolaev VS, Krylova AY, Pershukov VA (2006) Theor F Ch 40:183CrossRefGoogle Scholar
  20. 20.
    Whiter WB, Johnson SM, Dantzig GB (1958) J Chem Phys 28:751–755CrossRefGoogle Scholar
  21. 21.
    Zhu XX, Zhang SB, Qian XH (2004) Chin J Catal 25:571Google Scholar
  22. 22.
    Breck DW (1974) Zeolite molecular sieves: structure, chemistry, and use. Wiley, New YorkGoogle Scholar
  23. 23.
    Argauer RJ, Landolt GR (1972) US Patent 3,702,886Google Scholar
  24. 24.
    Lok BM, Messina CA, Patton R, Gajck RT (1984) J Am Chem S 106:6093CrossRefGoogle Scholar
  25. 25.
    Zeng ZK (1994) Selective catalysis. China Petrochemicl Press, BeijingGoogle Scholar
  26. 26.
    Rutenbeck D, Papp H, Freude D (2001) Appl Catal A:Gen 206:57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xiaoping Tang
    • 1
  • Huaqun Zhou
    • 1
  • Weizhong Qian
    • 1
  • Dezheng Wang
    • 1
  • Yong Jin
    • 1
  • Fei Wei
    • 1
  1. 1.Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations