Skip to main content
Log in

High Selectivity Production of Propylene from n-Butene: Thermodynamic and Experimental Study Using a Shape Selective Zeolite Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Propylene production by n-butene catalytic cracking was studied. Thermodynamic analysis and experimental results showed that a shape-selective catalyst, SAPO-34, with a small pore diameter and weak external acidic sites, can increase the propylene yield and selectivity to 48% and 66%, respectively, from the values of 31% and 36% over a ZSM-5 zeolite by inhibiting the formation of isobutene and other hydrocarbons whose dynamic diameters are larger than isobutene. The optimal temperature for the maximum equilibrium yield of propylene decreases from 600 to 550 °C. The effect of temperature, weight hourly space velocity and time-on-stream in the n-butene cracking process were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Corma A, Melo FV, Sauvanaud L, Ortega F (2005) Catal Today 699:107–108

    Google Scholar 

  2. http://www.cmaiglobal.com/Marketing/news/WLOA_WBA07.pdf

  3. Kogan SB, Herskowitz M (2001) Catal Commun 2:179

    Article  CAS  Google Scholar 

  4. Zhao TS, Takemoto T, Tsubaki N (2006) Catal Commun 7:647

    Article  CAS  Google Scholar 

  5. Schwab P, Schulz R, Schulz M (2000) US Patent 6,166,279

  6. Plotkin JS (2005) Catal Today 106:10

    Article  CAS  Google Scholar 

  7. Lu JY, Zhao Z, Xu CM (2006) Catal Lett 109:65

    Article  CAS  Google Scholar 

  8. Zhu XX, Liu SL, Song YQ (2005) Catal Lett 103:201

    Article  CAS  Google Scholar 

  9. Zhu XX, Liu SL, Song YQ (2005) Appl Catal A:Gen 290:191

    Article  CAS  Google Scholar 

  10. Zhang LJ, Xu CM, Gao JS (2005) Chin Petrochem Technol 34:714

    CAS  Google Scholar 

  11. Vora BV, Marker TL, Barger PT (2000) US Patent 6,049,017

  12. Liu JT, Xie ZK, Xu CM (2005) Chin Petrol Proc Petrochem 36:44

    CAS  Google Scholar 

  13. Zhu XX, Song YQ, Li HB (2005) Chin J Catal 26:110

    Google Scholar 

  14. Wang XQ (2003) Chin Petro Petrochem Today 11:5

    CAS  Google Scholar 

  15. Zhu XX, Liu SL, Song YQ, Xu LY (2005) Appl Catal A:Gen 288:134–142

    Article  CAS  Google Scholar 

  16. Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) US Patent 4,440,871

  17. Tan J, Liu Z, Bao X, Liu X, Han X, He C, Zhai R (2002) Microporous Mesoporous Mater 53:97

    Article  CAS  Google Scholar 

  18. Vonka P, Leitner J (1995) Calphad 19:25

    Article  CAS  Google Scholar 

  19. Derevich IV, Ermolaev VS, Krylova AY, Pershukov VA (2006) Theor F Ch 40:183

    Article  CAS  Google Scholar 

  20. Whiter WB, Johnson SM, Dantzig GB (1958) J Chem Phys 28:751–755

    Article  Google Scholar 

  21. Zhu XX, Zhang SB, Qian XH (2004) Chin J Catal 25:571

    CAS  Google Scholar 

  22. Breck DW (1974) Zeolite molecular sieves: structure, chemistry, and use. Wiley, New York

    Google Scholar 

  23. Argauer RJ, Landolt GR (1972) US Patent 3,702,886

  24. Lok BM, Messina CA, Patton R, Gajck RT (1984) J Am Chem S 106:6093

    Article  Google Scholar 

  25. Zeng ZK (1994) Selective catalysis. China Petrochemicl Press, Beijing

    Google Scholar 

  26. Rutenbeck D, Papp H, Freude D (2001) Appl Catal A:Gen 206:57

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the Natural Science Foundation of China (No. 20236020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X., Zhou, H., Qian, W. et al. High Selectivity Production of Propylene from n-Butene: Thermodynamic and Experimental Study Using a Shape Selective Zeolite Catalyst. Catal Lett 125, 380–385 (2008). https://doi.org/10.1007/s10562-008-9564-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9564-8

Keywords

Navigation