Advertisement

Catalysis Letters

, Volume 125, Issue 1–2, pp 160–167 | Cite as

Structure-activity Relation of Fe2O3–CeO2 Composite Catalysts in CO Oxidation

  • Huizhi Bao
  • Xin Chen
  • Jun Fang
  • Zhiquan Jiang
  • Weixin Huang
Article

Abstract

A series of Fe2O3–CeO2 composite catalysts were synthesized by coprecipitation and characterized by X-ray diffraction (XRD), BET surface area measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Their catalytic activities in CO oxidation were also tested. The Fe2O3–CeO2 composites with an Fe molar percentage below 0.3 form solid solutions with the CeO2 cubic fluorite structure, in which the doped Fe3+ initially substitutes Ce4+ in fluorite cubic CeO2, but then mostly locate in the interstitial sites after a critical concentration of doped Fe3+. With an Fe molar percentage between 0.3 and 0.95, the Fe2O3–CeO2 composites are mixed oxides of the cubic fluorite CeO2 solid solution and the hematite Fe2O3. XPS results indicate that CeO2 is enriched in the surface region of Fe2O3–CeO2 composites. The Fe2O3–CeO2 composites have much higher catalytic activities in CO oxidation than the individual pure CeO2 and Fe2O3, and the Fe0.1Ce0.9 composite shows the best catalytic performance. The structure-activity relation of the Fe2O3–CeO2 composites in CO oxidation is discussed in terms of the formation of solid solution and surface oxygen vacancies. Our results demonstrate a proportional relation between the catalytic activity of cubic CeO2-like solid solutions and their density of oxygen vacancies, which directly proves the formation of oxygen vacancies as the key step in CO oxidation over oxide catalysts.

Keywords

Structure-activity relation CeO2 Fe2O3 Oxide solid solution CO oxidation 

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (grant 20503027), the “Hundred Talent Program” of Chinese Academy of Sciences, the MOE program for PCSIRT (IRT0756), and the MPG-CAS partner group.

References

  1. 1.
    Kăspar J, Fornasiero P (eds) (2002) Catalysis by ceria and related materials. London, Imperial College PressGoogle Scholar
  2. 2.
    Trovarelli A (1996) Catal Rev Sci Eng 38:439CrossRefGoogle Scholar
  3. 3.
    Trovarelli A, de Leitenburg C, Dolcetti G (1997) CHEMTECH 27:32Google Scholar
  4. 4.
    Serre C, Garin F, Maire G (1993) J Catal 141:9CrossRefGoogle Scholar
  5. 5.
    Monteiro RS, Dieguez LC, Schmal M (2001) Catal Today 65:77CrossRefGoogle Scholar
  6. 6.
    Imamura S, Fukuda I, Ishida S (1988) Ind Eng Chem Res 27:718CrossRefGoogle Scholar
  7. 7.
    Mishra VS, Mahajani VV, Joshi JB (1995) Ind Eng Chem Res 34:2CrossRefGoogle Scholar
  8. 8.
    Schwartz JM, Schmidt LD (1994) J Catal 148:22CrossRefGoogle Scholar
  9. 9.
    Di Monte R, Kaspar J (2004) Top Catal 28:47CrossRefGoogle Scholar
  10. 10.
    Mackrodt WC, Fowles M, Morris MA (1991) European Patent 91:165Google Scholar
  11. 11.
    Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley JC, El Fallah J, Hilarie L, Leonormand F, Quemere E, Sauvion GN, Touret O (1991) J Chem Soc Faraday Trans I 87:160Google Scholar
  12. 12.
    Kubsh JE, Rieck JS, Spencer ND (1994) Stud Surf Sci Catal 71:109Google Scholar
  13. 13.
    Fornasiero P, Di Monte R, Ranga Rao G, Kaspar J, Meriani S, Trovarelli A, Graziani M (1995) J Catal 151:168CrossRefGoogle Scholar
  14. 14.
    Rynkowski J, Farbotko J, Touroube R, Hilaire L (1995) Appl Catal A 121:81Google Scholar
  15. 15.
    Liu W, Flytzani-Stephanopoulos M (1995) J Catal 153:304CrossRefGoogle Scholar
  16. 16.
    Palmqvist AEC, Wirde M, Gelius U, Muhammed M (1999) Nanostruct Mater 11:995CrossRefGoogle Scholar
  17. 17.
    Trovarelli A (1999) Comments Inorg Chem 20:263CrossRefGoogle Scholar
  18. 18.
    Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) J Phys Chem B 107:11475CrossRefGoogle Scholar
  19. 19.
    Monte RD, Kaspar J (2005) J Mater Chem 15:633CrossRefGoogle Scholar
  20. 20.
    Reddy BM, Khan A (2005) Catal Surv Jpn 9:155Google Scholar
  21. 21.
    Hrovat M, Holc J, Bernik S, Makovec D (1998) Mater Res Bull 33:1175CrossRefGoogle Scholar
  22. 22.
    Tianshu Z, Hing P, Huang H, Kilner J (2001) J Mater Proc Technol 113:463CrossRefGoogle Scholar
  23. 23.
    Li G, Smith RI, Inomata H (2001) J Am Chem Soc 123:11091CrossRefGoogle Scholar
  24. 24.
    Neri G, Pistone A, Milone C, Galvagno S (2002) Appl Catal B 38:321CrossRefGoogle Scholar
  25. 25.
    Kamimura Y, Sato S, Takahashi R, Sodesawa T, Akashi T (2003) Appl Catal A 252:399CrossRefGoogle Scholar
  26. 26.
    Pérez-Alonso FJ, López Granados M, Ojeda M, Terreros P, Rojas S, Herranz T, Fierro JLG, Gracia M, Gancedo JR (2005) Chem Mater 17:2329CrossRefGoogle Scholar
  27. 27.
    Pérez-Alonso FJ, Mélian-Cabrera I, López Granados M, Kapteijs F, Fierro JLG (2006) J Catal 239:340CrossRefGoogle Scholar
  28. 28.
    Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158CrossRefGoogle Scholar
  29. 29.
    Machida M, Kurogi D, Kijima T (2000) Chem Mater 12:3165CrossRefGoogle Scholar
  30. 30.
    Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR (2006) Chem Mater 18:3249CrossRefGoogle Scholar
  31. 31.
    Fang J, Bao HZ, He B, Wang F, Si DJ, Jiang ZQ, Pan ZY, Wei SQ, Huang WX (2007) J Phys Chem C 111:19078CrossRefGoogle Scholar
  32. 32.
    Milkes MF, Hayden P, Bhattacharya AK (2003) J Catal 219:295CrossRefGoogle Scholar
  33. 33.
    Madier Y, Descorme C, LeGovic AM, Duprez D (1999) J Phys Chem B 103:10999CrossRefGoogle Scholar
  34. 34.
    Nibbelke RH, Nievergeld AJL, Hoebnik JHBH, Marin GB (1998) Appl Catal B 19:245CrossRefGoogle Scholar
  35. 35.
    Aneggi E, Llorca J, Boaro M, Trovarelli A (2005) J Catal 234:88CrossRefGoogle Scholar
  36. 36.
    Moulder TF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden Prairie, MinnesotaGoogle Scholar
  37. 37.
    Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions and uses. VCH Publishers, New YorkGoogle Scholar
  38. 38.
    McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435CrossRefGoogle Scholar
  39. 39.
    De Faria DL, Silva SV, De Oliveira MT (1997) J Raman Spectrosc 28:873CrossRefGoogle Scholar
  40. 40.
    Zhang F (2002) Appl Phys Lett 80:127CrossRefGoogle Scholar
  41. 41.
    Xie S (2003) J Phys Chem B 105:5144CrossRefGoogle Scholar
  42. 42.
    Minervini L, Zacate MO, Grimes RW (1999) Solid State Ionics 116:339CrossRefGoogle Scholar
  43. 43.
    Fang J, Bi XZ, Si DJ, Jiang ZQ, Huang WX (2007) Appl Surf Sci 253:8952CrossRefGoogle Scholar
  44. 44.
    Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) J Chem Soc Dalton Trans 17:1686CrossRefGoogle Scholar
  45. 45.
    Huang WX, Ranke W, Schlögl R (2007) J Phys Chem C 111:2198CrossRefGoogle Scholar
  46. 46.
    Praline G, Koel BE, Hance RL, Lee HI, White JM (1980) J Electron Spectrosc Relat Phenom 21:17CrossRefGoogle Scholar
  47. 47.
    Kundakovic LJ, Mullins DR, Overbury SH (2000) Surf Sci 457:51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Huizhi Bao
    • 1
  • Xin Chen
    • 1
  • Jun Fang
    • 1
  • Zhiquan Jiang
    • 1
  • Weixin Huang
    • 1
  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations