Catalysis Letters

, 125:1 | Cite as

Redox Isotherms for Vanadia Supported on Zirconia

  • Parag R. Shah
  • John M. Vohs
  • Raymond J. Gorte


Redox isotherms were measured for zirconia-supported vanadia between 10−2 and 10−28 atm at 748 K for two vanadia loadings, 2.9 and 5.8 V/nm2, corresponding to isolated VO4 species and monolayer, polymeric vanadates. The catalyst with isolated VO4 species, which is expected to have predominantly V–O–Zr linkages, had a redox isotherm that showed a well-defined step corresponding to one oxygen per V. By contrast, the redox isotherm for the catalyst with polymeric vanadates changed more gradually with \( \hbox{P}_{{\rm O}_2} \) and the change in the oxygen stoichiometry corresponded to 0.85 O/V. Comparison of these results to the redox isotherms for bulk vanadates suggests that oxidation of the isolated vanadates proceeds by a direct transition from V+3 ↔ V+5, while transitions from V+3 ↔ V+4 and V+4 ↔ V+5 are possible with the polyvanadates. Rate measurements for methanol and propane oxidation over the two supported vanadia catalysts and several bulk vanadates showed that specific rates for each reaction were similar on all of the samples, suggesting that that the V–O bond strength does not affect the rate determining step of these reactions.


Supported catalyst Vanadia Vanadium oxide Cerium vanadate Magnesium vanadate Zirconium vanadate Zirconia Coulometric Titration Methanol oxidation Formaldehyde Oxidation Redox Equilibrium Partial oxidation 



The authors would like to acknowledge the Materials Characterization Facility at Drexel University for providing the Raman Spectrometer. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Grant DE-FG02-85ER13350.


  1. 1.
    Forzatti P, Tronconi E, Elmi AS, Busca G (1997) Appl Catal A 157:387CrossRefGoogle Scholar
  2. 2.
    Deo G, Wachs IE (1994) J Catal 146:323CrossRefGoogle Scholar
  3. 3.
    Briand LE, Jehng JM, Cornaglia L, Hirt AM, Wachs IE (2003) Catal Today 78:257CrossRefGoogle Scholar
  4. 4.
    Feng T, Vohs JM (2004) J Catal 221:619CrossRefGoogle Scholar
  5. 5.
    Dias CR, Portela MF (1997) Catal Rev Sci Engin 39:169CrossRefGoogle Scholar
  6. 6.
    Spengler J, Anderle F, Bosch E, Grasselli RK, Pillep B, Behrens P, Lapina OB, Shubin AA, Eberle HJ, Knozinger H (2001) J Phys Chem B 105:10772CrossRefGoogle Scholar
  7. 7.
    Khodakov A, Olthof B, Bell AT, Iglesia E (1999) J Catal 181:205CrossRefGoogle Scholar
  8. 8.
    Pieck CL, Banares MA, Fierro JLG (2004) J Catal 224:1CrossRefGoogle Scholar
  9. 9.
    Shee D, Rao TVM, Deo G (2006) Catal Today 118:288CrossRefGoogle Scholar
  10. 10.
    Jackson SD, Rugmini S (2007) J Catal 251:59CrossRefGoogle Scholar
  11. 11.
    Owens L, Kung HH (1994) J Catal 148:587CrossRefGoogle Scholar
  12. 12.
    Weckhuysen BM, Keller DE (2003) Catal Today 78:25CrossRefGoogle Scholar
  13. 13.
    Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67CrossRefGoogle Scholar
  14. 14.
    Bronkema JL, Bell AT (2008) J Phys Chem C 112:6404CrossRefGoogle Scholar
  15. 15.
    Chen KD, Xie SB, Bell AT, Iglesia E (2000) J Catal 195:244CrossRefGoogle Scholar
  16. 16.
    Roozeboom F, Mittelmeijerhazeleger MC, Moulijn JA, Medema J, Debeer VHJ, Gellings PJ (1980) J Phys Chem 84:2783CrossRefGoogle Scholar
  17. 17.
    Steinfeldt N, Muller D, Berndt H (2004) Appl Catal A 272:201CrossRefGoogle Scholar
  18. 18.
    De M, Kunzru D (2004) Catal Lett 96:33CrossRefGoogle Scholar
  19. 19.
    Ruitenbeek M, van Dillen AJ, de Groot FMF, Wachs IE, Geus JW, Koningsberger DC (2000) Top Catal 10:241CrossRefGoogle Scholar
  20. 20.
    Shah PR, Vohs JM, Gorte RJ (2007) J Phys Chem B 111:5680CrossRefGoogle Scholar
  21. 21.
    Shah PR, Khader MM, Vohs JM, Gorte RJ (2008) J Phys Chem C 112:2613CrossRefGoogle Scholar
  22. 22.
    Shah PR, Kim T, Zhou G, Fornasiero P, Gorte RJ (2006) Chem Mater 18:5363CrossRefGoogle Scholar
  23. 23.
    Zhou G, Shah PR, Montini T, Fornasiero P, Gorte RJ (2007) Surf Sci 601:2512CrossRefGoogle Scholar
  24. 24.
    Zhou G, Shah PR, Gorte RJ (2008) Catal Lett 120:191CrossRefGoogle Scholar
  25. 25.
    Zhou G, Shah PR, Kim T, Fornasiero P, Gorte RJ (2007) Catal Today 123:86CrossRefGoogle Scholar
  26. 26.
    Gao X, Jehng J-M, Wachs IE (2002) J Catal 209:43CrossRefGoogle Scholar
  27. 27.
    Su SC, Bell AT (1998) J Phys Chem B 102:7000CrossRefGoogle Scholar
  28. 28.
    Deo G, Wachs IE (1991) J Phys Chem 95:5889CrossRefGoogle Scholar
  29. 29.
    Da Silva JLF, Ganduglia-Pirovano MV, Sauer J (2007) Phys Rev B Condens Matter 76:125117Google Scholar
  30. 30.
    Evans JSO, Hanson JC, Sleight AW (1998) Acta Crystallogr Sect B Struct Sci 54:705CrossRefGoogle Scholar
  31. 31.
    Adamski A, Sojka Z, Dyrek K, Che M, Wendt G, Albrecht S (1999) Langmuir 15:5733CrossRefGoogle Scholar
  32. 32.
    Wu Z, Stair PC, Rugmini S, Jackson SD (2007) J Phys Chem C 111:16460CrossRefGoogle Scholar
  33. 33.
    Frank K, Wolff T, Lorenz H, Seidel-Morgenstern A, Suchorski Y, Piorkowska M, Weiss H (2007) J Catal 247:176CrossRefGoogle Scholar
  34. 34.
    Occhiuzzi M, Tuti S, Cordischi D, Dragone R, Indovina V (1996) J Chem Soc Faraday Trans 92:4337CrossRefGoogle Scholar
  35. 35.
    Argyle MD, Chen KD, Bell AT, Iglesia E (2002) J Catal 208:139CrossRefGoogle Scholar
  36. 36.
    Khodakov A, Yang J, Su S, Iglesia E, Bell AT (1998) J Catal 177:343CrossRefGoogle Scholar
  37. 37.
    Chen KD, Khodakov A, Yang J, Bell AT, Iglesia E (1999) J Catal 186:325CrossRefGoogle Scholar
  38. 38.
    Routray K, Briand LE, Wachs IE (2008) J Catal 256:145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Parag R. Shah
    • 1
  • John M. Vohs
    • 1
  • Raymond J. Gorte
    • 1
  1. 1.Department of Chemical & Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations