Skip to main content
Log in

Redox Isotherms for Vanadia Supported on Zirconia

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Redox isotherms were measured for zirconia-supported vanadia between 10−2 and 10−28 atm at 748 K for two vanadia loadings, 2.9 and 5.8 V/nm2, corresponding to isolated VO4 species and monolayer, polymeric vanadates. The catalyst with isolated VO4 species, which is expected to have predominantly V–O–Zr linkages, had a redox isotherm that showed a well-defined step corresponding to one oxygen per V. By contrast, the redox isotherm for the catalyst with polymeric vanadates changed more gradually with \( \hbox{P}_{{\rm O}_2} \) and the change in the oxygen stoichiometry corresponded to 0.85 O/V. Comparison of these results to the redox isotherms for bulk vanadates suggests that oxidation of the isolated vanadates proceeds by a direct transition from V+3 ↔ V+5, while transitions from V+3 ↔ V+4 and V+4 ↔ V+5 are possible with the polyvanadates. Rate measurements for methanol and propane oxidation over the two supported vanadia catalysts and several bulk vanadates showed that specific rates for each reaction were similar on all of the samples, suggesting that that the V–O bond strength does not affect the rate determining step of these reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Forzatti P, Tronconi E, Elmi AS, Busca G (1997) Appl Catal A 157:387

    Article  CAS  Google Scholar 

  2. Deo G, Wachs IE (1994) J Catal 146:323

    Article  CAS  Google Scholar 

  3. Briand LE, Jehng JM, Cornaglia L, Hirt AM, Wachs IE (2003) Catal Today 78:257

    Article  CAS  Google Scholar 

  4. Feng T, Vohs JM (2004) J Catal 221:619

    Article  CAS  Google Scholar 

  5. Dias CR, Portela MF (1997) Catal Rev Sci Engin 39:169

    Article  CAS  Google Scholar 

  6. Spengler J, Anderle F, Bosch E, Grasselli RK, Pillep B, Behrens P, Lapina OB, Shubin AA, Eberle HJ, Knozinger H (2001) J Phys Chem B 105:10772

    Article  CAS  Google Scholar 

  7. Khodakov A, Olthof B, Bell AT, Iglesia E (1999) J Catal 181:205

    Article  CAS  Google Scholar 

  8. Pieck CL, Banares MA, Fierro JLG (2004) J Catal 224:1

    Article  CAS  Google Scholar 

  9. Shee D, Rao TVM, Deo G (2006) Catal Today 118:288

    Article  CAS  Google Scholar 

  10. Jackson SD, Rugmini S (2007) J Catal 251:59

    Article  CAS  Google Scholar 

  11. Owens L, Kung HH (1994) J Catal 148:587

    Article  CAS  Google Scholar 

  12. Weckhuysen BM, Keller DE (2003) Catal Today 78:25

    Article  CAS  Google Scholar 

  13. Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67

    Article  CAS  Google Scholar 

  14. Bronkema JL, Bell AT (2008) J Phys Chem C 112:6404

    Article  CAS  Google Scholar 

  15. Chen KD, Xie SB, Bell AT, Iglesia E (2000) J Catal 195:244

    Article  CAS  Google Scholar 

  16. Roozeboom F, Mittelmeijerhazeleger MC, Moulijn JA, Medema J, Debeer VHJ, Gellings PJ (1980) J Phys Chem 84:2783

    Article  CAS  Google Scholar 

  17. Steinfeldt N, Muller D, Berndt H (2004) Appl Catal A 272:201

    Article  CAS  Google Scholar 

  18. De M, Kunzru D (2004) Catal Lett 96:33

    Article  CAS  Google Scholar 

  19. Ruitenbeek M, van Dillen AJ, de Groot FMF, Wachs IE, Geus JW, Koningsberger DC (2000) Top Catal 10:241

    Article  CAS  Google Scholar 

  20. Shah PR, Vohs JM, Gorte RJ (2007) J Phys Chem B 111:5680

    Article  CAS  Google Scholar 

  21. Shah PR, Khader MM, Vohs JM, Gorte RJ (2008) J Phys Chem C 112:2613

    Article  CAS  Google Scholar 

  22. Shah PR, Kim T, Zhou G, Fornasiero P, Gorte RJ (2006) Chem Mater 18:5363

    Article  CAS  Google Scholar 

  23. Zhou G, Shah PR, Montini T, Fornasiero P, Gorte RJ (2007) Surf Sci 601:2512

    Article  CAS  Google Scholar 

  24. Zhou G, Shah PR, Gorte RJ (2008) Catal Lett 120:191

    Article  CAS  Google Scholar 

  25. Zhou G, Shah PR, Kim T, Fornasiero P, Gorte RJ (2007) Catal Today 123:86

    Article  CAS  Google Scholar 

  26. Gao X, Jehng J-M, Wachs IE (2002) J Catal 209:43

    Article  CAS  Google Scholar 

  27. Su SC, Bell AT (1998) J Phys Chem B 102:7000

    Article  CAS  Google Scholar 

  28. Deo G, Wachs IE (1991) J Phys Chem 95:5889

    Article  CAS  Google Scholar 

  29. Da Silva JLF, Ganduglia-Pirovano MV, Sauer J (2007) Phys Rev B Condens Matter 76:125117

    Google Scholar 

  30. Evans JSO, Hanson JC, Sleight AW (1998) Acta Crystallogr Sect B Struct Sci 54:705

    Article  Google Scholar 

  31. Adamski A, Sojka Z, Dyrek K, Che M, Wendt G, Albrecht S (1999) Langmuir 15:5733

    Article  CAS  Google Scholar 

  32. Wu Z, Stair PC, Rugmini S, Jackson SD (2007) J Phys Chem C 111:16460

    Article  CAS  Google Scholar 

  33. Frank K, Wolff T, Lorenz H, Seidel-Morgenstern A, Suchorski Y, Piorkowska M, Weiss H (2007) J Catal 247:176

    Article  CAS  Google Scholar 

  34. Occhiuzzi M, Tuti S, Cordischi D, Dragone R, Indovina V (1996) J Chem Soc Faraday Trans 92:4337

    Article  CAS  Google Scholar 

  35. Argyle MD, Chen KD, Bell AT, Iglesia E (2002) J Catal 208:139

    Article  CAS  Google Scholar 

  36. Khodakov A, Yang J, Su S, Iglesia E, Bell AT (1998) J Catal 177:343

    Article  CAS  Google Scholar 

  37. Chen KD, Khodakov A, Yang J, Bell AT, Iglesia E (1999) J Catal 186:325

    Article  CAS  Google Scholar 

  38. Routray K, Briand LE, Wachs IE (2008) J Catal 256:145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Materials Characterization Facility at Drexel University for providing the Raman Spectrometer. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Grant DE-FG02-85ER13350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Gorte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, P.R., Vohs, J.M. & Gorte, R.J. Redox Isotherms for Vanadia Supported on Zirconia. Catal Lett 125, 1–7 (2008). https://doi.org/10.1007/s10562-008-9539-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9539-9

Keywords

Navigation