Catalysis Letters

, Volume 123, Issue 3–4, pp 321–326 | Cite as

Effect of CeO2 Doping on Structure and Catalytic Performance of Co3O4 Catalyst for Low-Temperature CO Oxidation

  • Xiao-Dong Hou
  • Yong-Zhao Wang
  • Yong-Xiang Zhao


The effect of CeO2 doping on structure and catalytic performance of Co3O4 catalyst was studied for low-temperature CO oxidation. The Co3O4 catalyst was prepared by a precipitation method and the CeO2/Co3O4 catalyst was prepared by an impregnation method. Their catalytic performance had been studied with a continuous flowing micro-reactor. The results reveal that the CeO2/Co3O4 catalyst exhibits much better resistance to water vapor poisoning than the Co3O4 catalyst for CO oxidation. The CeO2/Co3O4 catalyst can maintain CO complete conversion at least 8,400 min at 110 °C with 0.6% water vapor in the feed gas, while the Co3O4 catalyst can maintain at 100% for only 100 min. Characterizations with XRD, TEM and TPR suggest that the CeO2/Co3O4 catalyst possesses higher dispersion degree, smaller particles and larger SBET, due to the doping of Ceria, and exists the interaction between CeO2 and Co3O4, which may contribute to the excellent water resistance for low-temperature CO oxidation. Furthermore, the H2 detected in the reactor outlet gas seems to indicate that the water–gas shift reaction is the more direct reason.


Co3O4 CeO2/Co3O4 Carbon monoxide oxidation Water resistance 



The authors thank the Shanxi Natural Science Foundation (grants: 20041017) and Shanxi Scientific & Technological Promoted Project of China (grants: 031099) for the financial support of this work.


  1. 1.
    Yamaura H, Moriya K, Miura N, Yamazoe N (2000) Sens Actuators B 65:39CrossRefGoogle Scholar
  2. 2.
    Thormählen P, Fridell E, Cruise N, Skoglundh M, Palmqvist A (2001) Appl Catal B 31:1CrossRefGoogle Scholar
  3. 3.
    Shelef M, McCabe RW (2000) Catal Today 62:35CrossRefGoogle Scholar
  4. 4.
    Kim DH, Lim MS (2002) Appl Catal A 224:27CrossRefGoogle Scholar
  5. 5.
    Dong GL, Wang JG, Gao YB, Chen SY (1999) Catal Lett 58:37CrossRefGoogle Scholar
  6. 6.
    Margitfalvi JL, Borbáth I, Hegedűs M, Tfirst E, Gőbölös S, Lázár K (2000) J Catal 196:200CrossRefGoogle Scholar
  7. 7.
    Jia ML, Shen YN, Li CY, Bao ZRGT, Sheng SS (2005) Catal Lett 99:235CrossRefGoogle Scholar
  8. 8.
    Chiang CW, Wang AQ, Wan BZ, Mou CY (2005) J Phys Chem B 109:18042CrossRefGoogle Scholar
  9. 9.
    Liu W, Flytzani-Stephanopoulos M (1995) J Catal 153:304CrossRefGoogle Scholar
  10. 10.
    Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1998) Appl Catal A 166:143CrossRefGoogle Scholar
  11. 11.
    Bae CM, Ko JB, Kim DH (2005) Catal Commun 6:507CrossRefGoogle Scholar
  12. 12.
    Jia MJ, Zhang WX, Tao YG, Wang GY, Cui XH, Zhang CL, Wu TH (1999) Chem J Chin Univ 20:637 (in Chinese)Google Scholar
  13. 13.
    Lin HK, Chiu HC, Tsai HC, Chien SH, Wang CB (2003) Catal Lett 88:169CrossRefGoogle Scholar
  14. 14.
    Tang CW, Kuo CC, Kuo MC, Wang CB, Chien SH (2006) Appl Catal A 309:37CrossRefGoogle Scholar
  15. 15.
    Cunningham DAH, Kobayashi T, Kamijo N, Haruta M (1994) Catal Lett 25:257CrossRefGoogle Scholar
  16. 16.
    Jansson J (2000) J Catal 194:55CrossRefGoogle Scholar
  17. 17.
    Thormählen P, Skoglundh M, Fridell E, Andersson B (1999) J Catal 188:300CrossRefGoogle Scholar
  18. 18.
    Wang YZ, Zhao YX, Gao CG, Liu DS (2007) Catal Lett 116:136CrossRefGoogle Scholar
  19. 19.
    Drago RS, Jurczyk K, Singh DJ, Young V (1995) Appl Catal B 6:155CrossRefGoogle Scholar
  20. 20.
    Steen EV, Schulz H (1999) Appl Catal A 186:309CrossRefGoogle Scholar
  21. 21.
    Zhang ZL, Geng HR, Zheng LS, Du B (2005) J Alloys Compd 392:317CrossRefGoogle Scholar
  22. 22.
    Schmidt-Szaowski K, Krawczyk K, Petryk J (1998) Appl Catal A 175:147CrossRefGoogle Scholar
  23. 23.
    Grillo F, Natile MM, Glisenti A (2004) Appl Catal B 48:267CrossRefGoogle Scholar
  24. 24.
    Martinez-Arias A, Fernandez-Garcia M, Galbez O, Coronada JM, Anderson JA, Conesa JC, Soria J, Munuera G (2000) J Catal 195:207CrossRefGoogle Scholar
  25. 25.
    Terribile D, Trovarelli A, Llorca J, Leitenburg CD, Dolcetti G (1998) Catal Today 43:79CrossRefGoogle Scholar
  26. 26.
    Meunier FC, Reida D, Goguet A, Shekhtman S, Hardacre C, Burch R, Deng W, Flytzani-Stephanopoulos M (2007) J Catal 247:277CrossRefGoogle Scholar
  27. 27.
    Kang M, Song MW, Lee CH (2003) Appl Catal A 251:143CrossRefGoogle Scholar
  28. 28.
    Shao JJ, Zhang P, Tang XF, Zhang BC, Liu JL, Xu YD, Shen WJ (2006) Chin J Catal 27:937Google Scholar
  29. 29.
    Langford JI, Wilson AJC (1978) J Appl Crystallogr 11:102CrossRefGoogle Scholar
  30. 30.
    Li X, Zhang C, He H, Teraoka Y (2007) Appl Catal B 75:167CrossRefGoogle Scholar
  31. 31.
    Ernst B, Hilaire L, Kennemann A (1999) Catal Today 50:413CrossRefGoogle Scholar
  32. 32.
    Hilaire S, Wang X, Luo T, Gorte RJ, Wagner J (2001) Appl Catal A 215:271CrossRefGoogle Scholar
  33. 33.
    Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107CrossRefGoogle Scholar
  34. 34.
    Tabakova T, Idakiev V, Papavasiliou J, Avgouropoulos G, Ioannides T (2007) Catal Commun 8:101CrossRefGoogle Scholar
  35. 35.
    Zhu HQ, Qin ZF, Shan WJ, Shen WJ, Wang JG (2004) J Catal 225:267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xiao-Dong Hou
    • 1
  • Yong-Zhao Wang
    • 1
  • Yong-Xiang Zhao
    • 1
  1. 1.Engineering Research Center of Fine Chemicals Ministry of Education, School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuanChina

Personalised recommendations