Catalysis Letters

, Volume 123, Issue 3–4, pp 307–316 | Cite as

Phosgene-Free Synthesis of Phenyl Isocyanate by Catalytic Decomposition of Methyl N-Phenyl Carbamate over Bi2O3 Catalyst

  • Yunsheng Dai
  • Yue Wang
  • Jie Yao
  • Qingyin Wang
  • Liangming Liu
  • Wei Chu
  • Gongying Wang


A phosgene-free approach for the synthesis of phenyl isocyanate (PI) was developed, using the heterogeneous catalytic decomposition of methyl N-phenyl carbamate (MPC). Twenty oxide-catalysts were investigated and compared; the Bi2O3 catalyst gave the better catalytic performance. From bismuth (III) nitrate pentahydrate, Bi2O3 was prepared by different methods, which included the direct decomposition, mechano-chemical method, direct precipitation and indirect precipitation. The catalysts were characterized by N2 adsorption/desorption, XRD, FTIR and TEM analyses. After optimization, the Bi2O3 catalyst prepared by direct calcination of bismuth (III) nitrate pentahydrate at 723 K in air for 4 h gives the best activity. When the reaction was carried out at the boiling temperature of o-dichlorobenzene (ODCB) at normal pressure, the optimal reaction conditions over Bi2O3 catalyst are as follows: the mass ratio of catalyst/MPC is 0.05, mass ratio of ODCB/MPC is 15:1, reaction time of 60 min. The optimized conversion of MPC and the yield of PI are 86.2% and 78.5%, respectively. There was a good durability for the Bi2O3 catalyst, and the species of Bi (III) ions of catalyst were partially oxidized to Bi (IV) ions during the reaction, supported by the results of XRD and XPS techniques.


Phosgene-free synthesis Isocyanate Methyl N-phenyl carbamate Bismuth oxide Dimethyl carbonate 



This work was supported by the National High Technology Research and Development Program of China with project number 2006BAC02A08.


  1. 1.
    Chadwick DH, Cleveland TH (1981) In: Grayson M (ed) Encyclopedia of chemical technology, 3rd edn. Wiley, New York, p 793Google Scholar
  2. 2.
    Ragaini F, Cenini S (1996) J Mol Catal A 109:lGoogle Scholar
  3. 3.
    Srivastava R, Manju MD, Srinivas D, Ratnasamy P (2004) Catal Lett 97:41CrossRefGoogle Scholar
  4. 4.
    Ono Y (1997) Appl Catal A: Gen 155:133CrossRefGoogle Scholar
  5. 5.
    Fu ZH, Ono Y (1994) J Mol Catal A 91:399CrossRefGoogle Scholar
  6. 6.
    Katada N, Fujinaga H, Nakamura Y, Okumura K, Nishigaki K, Niwa M (2002) Catal Lett 80:47CrossRefGoogle Scholar
  7. 7.
    Li F, Miao J, Wang Y, Zhao X (2006) Ind Eng Chem Res 45:4892CrossRefGoogle Scholar
  8. 8.
    Cai Q, Jin C, Lu B, Tangbo H, Shan Y (2005) Catal Lett 103:225CrossRefGoogle Scholar
  9. 9.
    Drake IJ, Fujdala KL, Bell AT, Don Tilley T (2005) J Catal 230:14CrossRefGoogle Scholar
  10. 10.
    Valli VLK, Alper H (1995) J Org Chem 60:257CrossRefGoogle Scholar
  11. 11.
    Butler DCD, Alper H (1998) Chem Commun 23:2575CrossRefGoogle Scholar
  12. 12.
    Spohn RJ (1984) US patent 4487713Google Scholar
  13. 13.
    Uriz P, Serra M, Castillon S, Salagre P, Claver C, Fernandez E (2002) Tetrahedron Lett 43:1673CrossRefGoogle Scholar
  14. 14.
    Arora N, Deo G, Wachs IE, Hirt AM (1996) J Catal 159:1CrossRefGoogle Scholar
  15. 15.
    Hanna TA (2004) Coord Chem Rev 248:429CrossRefGoogle Scholar
  16. 16.
    Iwamoto M, Yoda Y, Yamazoe N, Seiyama T (1978) J Phys Chem 82:2564CrossRefGoogle Scholar
  17. 17.
    Driscoll DJ, Martir W, Lunsford JH (1987) J Phys Chem 91:3585CrossRefGoogle Scholar
  18. 18.
    Bergon M, Ben Hamida N, Calmon JP (1985) J Agric Food Chem 33:577CrossRefGoogle Scholar
  19. 19.
    Li Q, Li J, Xia X, Cao Y (1999) Acta Chim Sinica 57:491Google Scholar
  20. 20.
    Li W (2006) Mater Chem Phys 99:174CrossRefGoogle Scholar
  21. 21.
    Wang Y, Zhao X, Li F, Zhang W, Hao D (1999) Acta Petrol Sin (Pet Process Sect) 15:9Google Scholar
  22. 22.
    Duong HA, Cross MJ, Louie J (2004) Org Lett 6:4679CrossRefGoogle Scholar
  23. 23.
    Yoshitake N, Furukawa M (1995) J Anal Appl Pyrolysis 33:269CrossRefGoogle Scholar
  24. 24.
    Dimitrov V, Komatsu T (2002) J Solid State Chem 163:100CrossRefGoogle Scholar
  25. 25.
    Busca G (1999) Phys Chem Chem Phys 1:723CrossRefGoogle Scholar
  26. 26.
    Gotić M, Popović S, Musić S (2007) Mater Lett 61:709CrossRefGoogle Scholar
  27. 27.
    Irmawati R, Noorfarizan Nasriah MN, Taufiq-Yap YH, Abdul Hamid SB (2004) Catal Today 93–95:701CrossRefGoogle Scholar
  28. 28.
    Drache M, Roussel P, Wignacourt JP (2007) Chem Rev 107:80CrossRefGoogle Scholar
  29. 29.
    Carrazan SRG, Martin C, Rives V, Vidal R (1996) Spectrochim Acta Part A 52:1107CrossRefGoogle Scholar
  30. 30.
    Barreca D, Morazzoni F, Rizzi GA, Scotti R, Tondello E (2001) Phys Chem Chem Phys 3:1743CrossRefGoogle Scholar
  31. 31.
    Morgan WE, Van Wazer JR, Stec WJ (1973) Inorg Chem 12:953CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yunsheng Dai
    • 1
    • 2
  • Yue Wang
    • 1
  • Jie Yao
    • 1
  • Qingyin Wang
    • 1
  • Liangming Liu
    • 1
  • Wei Chu
    • 3
  • Gongying Wang
    • 1
  1. 1.Chengdu Institute of Organic ChemistryChinese Academy of SciencesChengduChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.Department of Chemical EngineeringSichuan UniversityChengduChina

Personalised recommendations