Advertisement

Catalysis Letters

, Volume 123, Issue 1–2, pp 135–141 | Cite as

Oxidation of Saturated Hydrocarbons to Alkyl Hydroperoxides by a ‘H2O2/Titanosilicalite-1/NaOH/MeCN’ System

  • Georgiy B. Shul’pin
  • Marina V. Kirillova
  • Tawan Sooknoi
  • Armando J. L. Pombeiro
Article

Abstract

Hydrogen peroxide oxidizes alkanes at room temperature to produce the corresponding alkyl hydroperoxides in the presence of titanosilicalite-1, NaOH and acetonitrile. The reaction proceeds with low regio- and bond-selectivity and its mechanism apparently involves the formation of hydroxyl radicals.

Keywords

Alkanes Alkyl hydroperoxides Hydrogen peroxide Titanium catalysts Nano structures Oxidation 

Notes

Acknowledgments

The authors thank the Fundação para a Ciência e a Tecnologia (FCT) and its POCI 2010 programme (FEDER funded) (grant BD/12811/03 for M. V. Kirillova), the MRTN-CT-2003-503864 (AQUACHEM) project and the Russian Basic Research Foundation (grant 06-03-32344-а) for support. G. B. Shul’pin expresses his gratitude to the FCT and the Centro de Química Estrutural, Instituto Superior Técnico, Lisbon, Portugal and the Department of Chemistry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand for making it possible for him to stay at these Institutes as invited Professor and to perform a part of the present work. The authors are indebted to Prof. Oksana A. Kholdeeva (Boreskov Institute of Catalysis, Novosibirsk, Russia) for valuable discussions and suggestions.

References

  1. 1.
    Grigoropoulou G, Clark JH, Elings JA (2003) Green Chem 5:1–7CrossRefGoogle Scholar
  2. 2.
    (a) Arends IWCE, Sheldon RA (2002) Topics Catal 19:133–141. (b) Lane BS, Burgess K (2003) Chem Rev 103:2457–2473. (c) Buffon R, Schuchardt U (2003) J Braz Chem Soc 14:347–353. (d) Xia Q-H, Ge H-Q, Ye C-P, Liu Z-M, Su K-X (2005) Chem Rev 105:1603–1662Google Scholar
  3. 3.
    (a) Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879–2932. (b) Shilov AE, Shul’pin GB (2000) Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Kluwer Academic Publishers, Dordrecht/Boston/London. (c) Shul’pin GB (2004) Oxidations of C–H compounds catalyzed by metal complexes. In: Beller M, Bolm C (eds) Transition metals for organic synthesis, vol 2(Chapter 2.2), 2nd edn. Wiley–VCH, Weinheim/New York, pp 215–242. (d) Kirillov AM, Kopylovich MN, Kirillova MV, Haukka M, Guedes da Silva MFC, Pombeiro AJL (2005) Angew Chem Int Ed 44:4345–4349. (e) Kirillov AM, Kopylovich MN, Kirillova MV, Karabach EYu, Haukka M, Guedes da Silva MFC, Pombeiro AJL (2006) Adv Synth Catal 348:159–174. (f) Nesterov DS, Kokozay VN, Dyakonenko VV, Shishkin OV, Jezierska J, Ozarowski A, Kirillov AM, Kopylovich MN, Pombeiro AJL (2006) Chem Commun 4605–4607. (g) Alegria ECB, Kirillova MV, Martins LMDR S, Pombeiro AJL (2007) Appl Catal A: Gen 317:43–52. (h) Kirillova MV, Kirillov AM, Reis PM, da Silva JAL, Fraústo da Silva JJR, Pombeiro AJL (2007) J Catal 248:130–136Google Scholar
  4. 4.
    (a) Payne GB, Williams PH (1961) J Org Chem 26:651–659. (b) Payne GB, Deming PH, Williams PH (1961) J Org Chem 26:659–663Google Scholar
  5. 5.
    (a) Arias LA, Adkins S, Nagel CJ, Bach RD (1983) J Org Chem 48:888–890. (b) Rocha Gonsalves AMd’A, Johnstone RAW, Pereira MM, Shaw J (1991) J Chem Res (S) 208–209. (c) Frank WC (1998) Tetrahedron: Asymmetry 9:3745–3749. (d) Shu L, Shi Y (1999) Tetrahedron Lett 40:8721–8724. (e) Shu L, Shi Y (2001) Tetrahedron 57:5213–5218. (f) Shi Y (2004) Acc Chem Res 37:488–496. (g) Majetich G, Hicks R, Sun G, McGill P (1998) J Org Chem 63:2564–2573Google Scholar
  6. 6.
    (a) Fraile JM, Garcia JI, Mayoral JA, Figueras F (1996) Tetrahedron Lett 37:5995–5996. (b) Ueno S, Yamaguchi K, Yoshida K, Ebitani K, Kaneda K (1998) Chem Commun 295–296. (c) Yamaguchi K, Ebitani K, Kaneda K (1999) J Org Chem 64:2966–2968. (d) Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K (2000) J Org Chem 65:6897–6903. (e) Fraile JM, Garcia JI, Mayoral JA (2000) Catal Today 57:3–16. (f) Fraile JM, Garcia JI, Marco D, Mayoral JA (2001) Appl Catal A: Gen 207:239–246. (g) Pillai UR, Sahle-Demessie E, Varma RS (2002) Tetrahedron Lett 43:2909–2911Google Scholar
  7. 7.
    Brauer H-D, Eiler B, Lange A (2002) J Chem Soc Perkin Trans 2:1288–1295Google Scholar
  8. 8.
    (a) Chiker F, Launay F, Nogier JP, Bonardet JL (2003) Green Chem 5:318–322. (b) Kholdeeva OA, Trukhan NN (2006) Uspekhi Khimii 75:460–483Google Scholar
  9. 9.
    (a) Munakata H, Oumi Y, Miyamoto A (2001) J Phys Chem B 105:3493–3501. (b) Wu P, Tatsumi T (2002) J Phys Chem B 106:748–753. (c) Schofield LJ, Kerton OJ, McMorn P, Bethell D, Ellwood S, Hutchings GJ (2002) J Chem Soc Perkin Trans 2:2064–2071. (d) Yokoi T, Wu P, Tatsumi T (2003) Catal Commun 4:11–15. (e) Balducci L, Bianchi D, Bortolo R, D’Aloisio, R, Ricci M, Tassinari R, Ungarelli R (2003) Angew Chem Int Ed 42:4937–4940. (f) Kim JH, Do YJ, Park JH, Park SS, Hong SS, Lee GD (2004) React Kinet Catal Lett 83:377-383. (g) Nur H, Prasetyoko D, Ramli Z, Endud S (2004) Catal Commun 5:725–728. (h) Wells DH Jr, Delgass WN, Thomson KT (2004) J Am Chem Soc 126:2956–2962. (i) Wróblewska, A, Milchert E (2005) Przemysl Chemiczny 84:923–926. (j) Welch A, Shiju NR, Watts ID, Sankar G, Nikitenko S, Bras W (2005) Catal Lett 105:179–182. (k) Klaewkla R, Rirksomboon T, Kulprathipanja S, Nemeth L, Rangsunvigit P (2006) Catal Commun 7:260–263. (l) Liu H, Lu G, Hu H (2006) Mater Chem Phys 100:162–167. (m) Wells DH, Jr, Joshi AM, Delgass WN, Thomson KT (2006) J Phys Chem B 110:14627–14639. (n) Ramachandran CE, Zhao Q, Zikanova A, Kocirik M, Broadbelt LJ, Snurr RQ (2006) Catal Commun 7:936–940. (o) Kang K-K, Rhee, H-K (2006) Stud Surf Sci Catal 159:789–792. (p) Wróblewska, A, Ławro, E, Milchert E (2006) Ind Eng Chem Res 45:7365–7373. (q) Panyaburapa W, Nanok T, Limtrakul J (2007) J Phys Chem C 111:3433–3441. (r) Klaewkla R, Kulprathipanja S, Rangsunvigit P, Rirksomboon T, Rathbun W, Nemeth L (2007) Chem Eng J 129:21–30. (s) Li G, Edwards J, Carley AF, Hutchings GJ (2007) Catal Commun 8:247–250Google Scholar
  10. 10.
    (a) Duprey E, Maquet J, Man PP, Manoli J-M, Delamar M, Brégeault, J-M (1995) Appl Catal A: Gen 128:89–96. (b) Trong-On D, Ungureanu A, Kaliaguine S (2003) Phys Chem Chem Phys 5:3534–3538Google Scholar
  11. 11.
    (a) Clerici MG (1991) Appl Catal 68:249–261. (b) Khouw CB, Dartt CB, Labinger JA, Davis ME (1994) J Catal 149:195–205. (c) Kooyman PJ, Luijkx GCA, Arafat A, van Bekkum H (1996) J Mol Catal A: Chem 111:167–174. (d) Vankelecom I, Vercruysse K, Moens N, Parton R, Reddy JS, Jacobs P (1997) Chem Commun 137–138 . (e) Clerici MG (2001) Topics Catal 15:257–263 (f) Tao J, Tang D, Li Q, Yu Z, Min E (2001) J Nat Gas Chem 10:295–307. (g) Poladi RHPR, Landry CC (2002) Micropor Mesopor Mater 52:11–18. (h) Halasz I, Agarwal M, Senderov E, Markus B (2003) Appl Catal A: Gen 241:167–184. (i) Gao L, Jiang T, Han BX, Zong BN, Zhang XX, Zhang JC (2006) Aust J Chem 59:225–228Google Scholar
  12. 12.
    (a) Shul’pin GB, Sooknoi T, Romakh VB, Süss-Fink G, Shul’pina LS (2006) Tetrahedron Lett 47:3071–3075. (b) Shul’pin GB, Sooknoi T, Shul’pina LS (2008) Petrol Chem 48(1):36–39Google Scholar
  13. 13.
    Sooknoi T, Limtrakul (2002) J Appl Catal A: Gen 233:227–237Google Scholar
  14. 14.
    (a) Shul’pin GB (2002) J Mol Catal A: Chem 189:39–66. (b) Shul’pin GB (2003) Comptes Rendus Chimie 6:163–178. (c) Shul’pin GB, Druzhinina AN (1992) React Kinet Catal Lett 47:207–211. (d) Shul’pin GB, Nizova GV (1992) React Kinet Catal Lett 48:333–338. (e) Shul’pin GB, Attanasio D, Suber L (1993) J Catal 142:147–152. (f) Shul’pin GB, Nizova GV, Kozlov YN (1996) New J Chem 20:1243–1256Google Scholar
  15. 15.
    (a) Vanoppen DL, De Vos DE, Genet MJ, Rouxhet PG, Jacobs PA (1995) Angew Chem Int Ed 34:560–563. (b) Takaki K, Yamamoto J, Matsushita Y, Morii H, Shishido T, Takehira K (2003) Bull Chem Soc Japan 76:393–398. (c) Balula MSS, Santos ICMS, Simões MMQ, Neves MGPMS, Cavaleiro JAS, Cavaleiro AMV (2004) J Mol Catal A: Chem 222:159–165. (d) Tian P, Liu Z, Wu Z, Xu L, He Y (2004) Catal Today 93–95:735–742. (e) Anisia KS, Kumar A (2004) Appl Catal A: Gen 273:193–200. (f) Tanase S, Foltz C, de Gelder R, Hage R, Bouwman E, Reedijk J (2005) J Mol Catal A: Chem 225:161–167. (g) Britovsek GJP, England J, Spitzmesser SK, White AJP, Williams DJ (2005) J Chem Soc Dalton Trans 945–955. (h) Zhang R, Qin Z, Dong M, Wang G, Wang J (2005) Catal Today 110:351–356. (i) Bonchio M, Carraro M, Scorrano G, Kortz U (2005) Adv Synth Catal 347:1909–1912. (j) Carvalho NMF, Horn A Jr, Antunes OAC (2006) Appl Catal A: Gen 305:140–145. (k) Du P, Moulijn JA, Mul G (2006) J Catal 238:342–352. (l) de Castries A, Magnier E, Monmotton S, Fensterbank H, Larpent C (2006) Eur J Org Chem 4685–4692. (m) Carraro M, Gardan M, Scorrano G, Drioli E, Fontananova E, Bonchio M (2006) Chem Commun 4533–4535. (n) Bonchio M, Carraro M, Sartorel A, Scorrano G, Kortz U (2006) J Mol Catal A: Chem 251:93–99. (p) Trettenhahn G, Nagl M, Neuwirth N, Arion VB, Jary W, Pöchlauer P, Schmid W (2006) Angew Chem Int Ed 45:2794–2798. (q) Trakarnpruk W, Dumrongpong P (2006) J Mater Sci 41:3001–3006. (r) Xu L-X, He C-H, Zhu M-Q, Fang S (2007) Catal Lett 114:202–205. (s) Yuan Q, Deng W, Zhang Q, Wang Y (2007) Adv Synth Catal 349:1199–1209. (t) Xu L-X, He C-H, Zhu M-Q, Fang S (2007) Catal Lett 114:202–205. (u) Xu L-X, He C-H, Zhu M-Q, Wu K-J, Lai Y-L (2007) Catal Lett 188:248–253. (v) Anisia KS, Kumar A (2007) J Mol Catal A: Chem 271:164–179. (w) Fornal E, Giannotti C (2007) J Photochem Photobiol A: Chem 188:279–286. (x) Zhan B-Z, Modén B, Dakka J, Santiesteban JG, Iglesia E (2007) J Catal 245:316–325Google Scholar
  16. 16.
    (a) Shul’pin GB, Kozlov YN, Nizova GV, Süss-Fink G, Stanislas S, Kitaygorodskiy A, Kulikova VS (2001) J Chem Soc Perkin Trans 2:1351–1371. (b) de la Cruz MHC, Kozlov YN, Lachter ER, Shul’pin GB (2003) New J Chem 27:634–638. (c) Kozlov YN, Nizova GV, Shul’pin GB (2005) J Mol Catal A: Chem 227:247–253. (d) Khalliulin RZ, Bell AT, Head-Gordon M (2005) J Phys Chem B 109:17984–17992. (e) Shul’pin GB, Mishra GS, Shul’pina LS, Strelkova TV, Pombeiro AJL (2007) Catal Commun 8:1516–1520. (f) Kozlov YN, Romakh VB, Kitaygorodskiy A, Buglyó P, Süss-Fink G, Shul’pin GB (2007) J Phys Chem A 111:7736–7752Google Scholar
  17. 17.
    Shul’pin GB (2002) J Chem Res (S) 351–353Google Scholar
  18. 18.
    Shul’pin GB, Kudinov AR, Shul’pina LS, Petrovskaya EA (2006) J Organomet Chem 691:837–845CrossRefGoogle Scholar
  19. 19.
    Deno NC, Jedziniak EJ, Messer LA, Meyer MD, Stroud SG, Tomezsko ES (1977) Tetrahedron 33:2503–2508CrossRefGoogle Scholar
  20. 20.
    Shul’pin GB, Süss-Fink G, Shilov AE (2001) Tetrahedron Lett 42:7253–7256CrossRefGoogle Scholar
  21. 21.
    (a) Lindsay Smith JR, Shul’pin GB (1998) Tetrahedron Lett 39:4909–4912. (b) Shul’pin GB, Süss-Fink G, Shul’pina LS (2001) J Mol Catal A: Chem 170:17–34. (c) Nizova GV, Bolm C, Ceccarelli S, Pavan C, Shul’pin, GB (2002) Adv Synth Catal 344:899–905. (d) Woitiski CB, Kozlov YN, Mandelli D, Nizova GV, Schuchardt U, Shul’pin, GB (2004) J Mol Catal A: Chem 222:103–119. (e) dos Santos VA, Shul’pina, LS, Veghini D, Mandelli D, Shul’pin GB (2006) React Kinet Catal Lett 88:339–348. (f) Nizova GV, Shul’pin GB (2007) Tetrahedron 63:7997–8001. (g) Kozlov YN, Nizova GV, Shul’pin, G B (2008) J Phys Org Chem 21. doi: 10.1002/poc.1295
  22. 22.
    Romakh VB, Therrien B, Süss-Fink G, Shul’pin GB (2007) Inorg Chem 46:1315–1331CrossRefGoogle Scholar
  23. 23.
    Previously, a maximum for the epoxide yield has been observed at pH = 11 in the olefin epoxidation by the ‘H2O2–CF3COCF3’ system, see: Shu L, Shi Y (2000) J Org Chem 65:8807–8810Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Georgiy B. Shul’pin
    • 1
  • Marina V. Kirillova
    • 2
  • Tawan Sooknoi
    • 3
  • Armando J. L. Pombeiro
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Centro de Química Estrutural, Complexo IInstituto Superior TécnicoLisbonPortugal
  3. 3.Department of ChemistryKing Mongkut’s Institute of Technology LadkrabangLadkrabang, BangkokThailand

Personalised recommendations