Advertisement

Catalysis Letters

, Volume 121, Issue 3–4, pp 179–188 | Cite as

Effect of Co Content Upon the Bulk Structure of Sr- and Co-doped LaFeO3

  • John N. Kuhn
  • Umit S. Ozkan
Article

Abstract

The bulk structure was investigated for Fe-based perovskite-type oxides with the formula La0.6Sr0.4CoyFe1−yO3−δ (y = 0.1, 0.2, and 0.3). The materials were confirmed to be stoichiometric with respect to oxygen under ambient conditions and the structural features were then further characterized under different environments as a function of temperature. Under reducing atmospheres, the degree of reduction increased with Co content, suggesting the presence of preferential oxidation of Fe over Co. Under milder conditions, oxygen vacancy formation was not proportional to Co content, which was likely caused by an electronic structure transition. The unit cell parameters were also shown to strongly depend upon Co content, temperature, and environment. A rhombohedral to cubic transition occurred at lower temperatures for higher Co content, but showed less dependence upon environment. A change in the thermal expansion behavior occurred at the temperature where oxygen vacancies formed leading to two regions of linear thermal expansion. The use of lattice parameters compared to dilatometry allowed for the simultaneous monitoring of unit cell symmetry and expansion behavior so the link between thermal properties and unit cell symmetry could be firmly established.

Keywords

Perovskite-type oxides High temperature phase transition In-situ XRD Oxygen nonstoichiometry 

Notes

Acknowledgments

The financial support provided for this work by the Ohio Coal Development Office and the Ohio Department of Development through a Wright Center of Innovation is gratefully acknowledged. The authors also thank Rick B. Watson for technical assistance in the initial stages of this research.

References

  1. 1.
    Adler SB (2004) Chem Rev 104:4791CrossRefGoogle Scholar
  2. 2.
    Mizusaki J, Yoshihiro M, Yamauchi S, Fueki K (1985) J Solid State Chem 58:257CrossRefGoogle Scholar
  3. 3.
    Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) J Solid State Chem 80:102CrossRefGoogle Scholar
  4. 4.
    Mizusaki J, Moir N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokiya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T (2000) Solid State Ionics 129:163CrossRefGoogle Scholar
  5. 5.
    Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) J Electrochem Soc 143:2722CrossRefGoogle Scholar
  6. 6.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:259CrossRefGoogle Scholar
  7. 7.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:273CrossRefGoogle Scholar
  8. 8.
    Lankhorst MHR, ten Elshof JE (1997) J Solid State Chem 130:302CrossRefGoogle Scholar
  9. 9.
    Pena MA, Fierro JLG (2001) Chem Rev 101:1981CrossRefGoogle Scholar
  10. 10.
    Wang S, Katsuki M, Dokiya M, Hashimoto T (2003) Solid State Ionics 159:71CrossRefGoogle Scholar
  11. 11.
    Petrov AN, Kononchuk OF, Andreev AV, Cerepanov VA, Kofstad P (1995) Solid State Ionics 80:189CrossRefGoogle Scholar
  12. 12.
    Wiik K, Aasland S, Hansen HL, Tangen IL, Ødegard R (2002) Solid State Ionics 152–153:675CrossRefGoogle Scholar
  13. 13.
    Qui L, Lee TH, Liu LM, Yang YL, Jacobson AJ (1995) Solid State Ionics 76:321CrossRefGoogle Scholar
  14. 14.
    Kruidhof H, Bouwmeester HJM, van Doorn RHE, Burggraaf AJ (1993) Solid State Ionics 63–65:816CrossRefGoogle Scholar
  15. 15.
    McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Solid State Ionics 177:1737CrossRefGoogle Scholar
  16. 16.
    Vente JF, McIntosh S, Haije WG, Bouwmeester HJM (2006) J Electrochem Soc 10:581Google Scholar
  17. 17.
    Yang ZH, Lin YS (2005) Solid State Ionics 176:89CrossRefGoogle Scholar
  18. 18.
    Nemeth Z, Homonnay Z, Arva F, Klencsar Z, Kuzmann E, Hakl J, Vad K, Meszaros S, Kellner K, Gritzner G, Vertes A (2007) J Radioanal Nucl Chem 271:11CrossRefGoogle Scholar
  19. 19.
    Petric A, Huang P, Tietz F (2000) Solid State Ionics 135:719CrossRefGoogle Scholar
  20. 20.
    Adler SB (2001) J Am Ceram Soc 84:2117CrossRefGoogle Scholar
  21. 21.
    Chen X, Yu J, Adler SB (2005) Chem Mater 17:4537CrossRefGoogle Scholar
  22. 22.
    Yamazoe N, Teraoka Y, Seiyama T (1981) Chem Lett 1767Google Scholar
  23. 23.
    Seiyama T, Yamazoe N, Eguchi K (1985) Ind Eng Chem Prod Res Dev 24:19CrossRefGoogle Scholar
  24. 24.
    Kaliaguine S, Van Neste A, Szabo V, Gallot JE, Bassir M, Muzychuk R (2001) Appl Catal A: Gen 209:345CrossRefGoogle Scholar
  25. 25.
    Mantzavinos D, Hartley A, Metcalfe IS, Sahibzada M (2000) Solid State Ionics 134:103CrossRefGoogle Scholar
  26. 26.
    Merino NA, Barbero BP, Ruiz P, Cadus LE (2006) J Catal 240:245CrossRefGoogle Scholar
  27. 27.
    Kuhn JN, Ozkan US (2007) J Catal (accepted)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations