Skip to main content
Log in

Effect of Co Content Upon the Bulk Structure of Sr- and Co-doped LaFeO3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The bulk structure was investigated for Fe-based perovskite-type oxides with the formula La0.6Sr0.4CoyFe1−yO3−δ (y = 0.1, 0.2, and 0.3). The materials were confirmed to be stoichiometric with respect to oxygen under ambient conditions and the structural features were then further characterized under different environments as a function of temperature. Under reducing atmospheres, the degree of reduction increased with Co content, suggesting the presence of preferential oxidation of Fe over Co. Under milder conditions, oxygen vacancy formation was not proportional to Co content, which was likely caused by an electronic structure transition. The unit cell parameters were also shown to strongly depend upon Co content, temperature, and environment. A rhombohedral to cubic transition occurred at lower temperatures for higher Co content, but showed less dependence upon environment. A change in the thermal expansion behavior occurred at the temperature where oxygen vacancies formed leading to two regions of linear thermal expansion. The use of lattice parameters compared to dilatometry allowed for the simultaneous monitoring of unit cell symmetry and expansion behavior so the link between thermal properties and unit cell symmetry could be firmly established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adler SB (2004) Chem Rev 104:4791

    Article  CAS  Google Scholar 

  2. Mizusaki J, Yoshihiro M, Yamauchi S, Fueki K (1985) J Solid State Chem 58:257

    Article  CAS  Google Scholar 

  3. Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) J Solid State Chem 80:102

    Article  CAS  Google Scholar 

  4. Mizusaki J, Moir N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokiya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T (2000) Solid State Ionics 129:163

    Article  CAS  Google Scholar 

  5. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) J Electrochem Soc 143:2722

    Article  CAS  Google Scholar 

  6. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:259

    Article  CAS  Google Scholar 

  7. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:273

    Article  CAS  Google Scholar 

  8. Lankhorst MHR, ten Elshof JE (1997) J Solid State Chem 130:302

    Article  CAS  Google Scholar 

  9. Pena MA, Fierro JLG (2001) Chem Rev 101:1981

    Article  CAS  Google Scholar 

  10. Wang S, Katsuki M, Dokiya M, Hashimoto T (2003) Solid State Ionics 159:71

    Article  CAS  Google Scholar 

  11. Petrov AN, Kononchuk OF, Andreev AV, Cerepanov VA, Kofstad P (1995) Solid State Ionics 80:189

    Article  CAS  Google Scholar 

  12. Wiik K, Aasland S, Hansen HL, Tangen IL, Ødegard R (2002) Solid State Ionics 152–153:675

    Article  Google Scholar 

  13. Qui L, Lee TH, Liu LM, Yang YL, Jacobson AJ (1995) Solid State Ionics 76:321

    Article  Google Scholar 

  14. Kruidhof H, Bouwmeester HJM, van Doorn RHE, Burggraaf AJ (1993) Solid State Ionics 63–65:816

    Article  Google Scholar 

  15. McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Solid State Ionics 177:1737

    Article  CAS  Google Scholar 

  16. Vente JF, McIntosh S, Haije WG, Bouwmeester HJM (2006) J Electrochem Soc 10:581

    CAS  Google Scholar 

  17. Yang ZH, Lin YS (2005) Solid State Ionics 176:89

    Article  CAS  Google Scholar 

  18. Nemeth Z, Homonnay Z, Arva F, Klencsar Z, Kuzmann E, Hakl J, Vad K, Meszaros S, Kellner K, Gritzner G, Vertes A (2007) J Radioanal Nucl Chem 271:11

    Article  CAS  Google Scholar 

  19. Petric A, Huang P, Tietz F (2000) Solid State Ionics 135:719

    Article  CAS  Google Scholar 

  20. Adler SB (2001) J Am Ceram Soc 84:2117

    Article  CAS  Google Scholar 

  21. Chen X, Yu J, Adler SB (2005) Chem Mater 17:4537

    Article  CAS  Google Scholar 

  22. Yamazoe N, Teraoka Y, Seiyama T (1981) Chem Lett 1767

  23. Seiyama T, Yamazoe N, Eguchi K (1985) Ind Eng Chem Prod Res Dev 24:19

    Article  CAS  Google Scholar 

  24. Kaliaguine S, Van Neste A, Szabo V, Gallot JE, Bassir M, Muzychuk R (2001) Appl Catal A: Gen 209:345

    Article  CAS  Google Scholar 

  25. Mantzavinos D, Hartley A, Metcalfe IS, Sahibzada M (2000) Solid State Ionics 134:103

    Article  CAS  Google Scholar 

  26. Merino NA, Barbero BP, Ruiz P, Cadus LE (2006) J Catal 240:245

    Article  CAS  Google Scholar 

  27. Kuhn JN, Ozkan US (2007) J Catal (accepted)

Download references

Acknowledgments

The financial support provided for this work by the Ohio Coal Development Office and the Ohio Department of Development through a Wright Center of Innovation is gratefully acknowledged. The authors also thank Rick B. Watson for technical assistance in the initial stages of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umit S. Ozkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, J.N., Ozkan, U.S. Effect of Co Content Upon the Bulk Structure of Sr- and Co-doped LaFeO3 . Catal Lett 121, 179–188 (2008). https://doi.org/10.1007/s10562-007-9364-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9364-6

Keywords

Navigation