Catalysis Letters

, Volume 121, Issue 3–4, pp 189–198 | Cite as

A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol

  • Stephen Schuyten
  • Peter Dinka
  • Alexander S. Mukasyan
  • Eduardo Wolf


Complex catalysts containing combinations of copper, zinc, zirconium, and palladium oxides were prepared via three combustion synthesis routes including volume combustion, impregnated substrate combustion, and so-called second wave impregnation combustion methods. These catalysts were characterized via XRD, XPS, N2O decomposition and BET techniques and evaluated for their activity and selectivity for the partial oxidation of methanol. The novel second combustion wave method showed superior palladium active metal loadings compared to conventional volume combustion synthesis modes. Palladium is also shown to significantly lower the reduction temperature of bulk CuO. Combustion synthesis based methods show promise for synthesis of methanol reforming catalysts.


Methanol partial oxidation Copper Palladium Catalyst Combustion synthesis 



SS and EEW gratefully acknowledge funding from the International Copper Association (ICA) for support of this work. AM and PD were supported by the U.S. Army CECOM RDEC through Agreement DAAB07-03-3-K414. Such support does not constitute endorsement by the U.S. Army of the views expressed in this publication.


  1. 1.
    Demirbas AF (2004) Energy Explor Exploit 22:231–239CrossRefGoogle Scholar
  2. 2.
    Farrauto R, Hwang S, Shore L, Ruettinger W, Lampert J, Giroux T, Liu Y, Ilinich O (2003) Ann Rev Mater Res 33:1–27CrossRefGoogle Scholar
  3. 3.
    Trimm DL, Onsan ZI (2001) Catal Rev Sci Eng 43:31–84CrossRefGoogle Scholar
  4. 4.
    Brown LF (2001) Int J Hydrogen Energy 26:381–397CrossRefGoogle Scholar
  5. 5.
    Usami Y, Kangawa K, Kawazoe M, Matsumura Y, Sakurai H, Haruta M (1998) Appl Catal A Gen 171:123–130CrossRefGoogle Scholar
  6. 6.
    Kapoor MP, Ichihashi Y, Kuraoka K, Shen WJ, Matsumura Y (2003) Catal Lett 88:83–87CrossRefGoogle Scholar
  7. 7.
    Kapoor MP, Ichihashi Y, Kuroka K, Matsumura Y (2003) J Mol Catal A Chem 198:303–308CrossRefGoogle Scholar
  8. 8.
    Lenarda M, Moretti E, Storaro L, Patrono P, Pinzari F, Rodriguez-Castellon E, Jimenez-Lopez A, Busca G, Finocchio E, Montanari T, Frattini R (2006) Appl Catal A Gen 312:220–228CrossRefGoogle Scholar
  9. 9.
    Cubeiro ML, Fierro JLG (1998) Appl Catal A Gen 168:307–322CrossRefGoogle Scholar
  10. 10.
    Cubeiro ML, Fierro JLG (1998) J Catal 179:150–162CrossRefGoogle Scholar
  11. 11.
    Iwasa N, Takezawa N (2003) Top Catal 22:215–224CrossRefGoogle Scholar
  12. 12.
    Purnama H, Girgsdies F, Ressler T, Schattka JH, Caruso RA, Schomacker R, Schlogl R (2004) Catal Lett 94:61–68CrossRefGoogle Scholar
  13. 13.
    Velu S, Suzuki K, Kapoor MP, Ohashi F, Osaki T (2001) Appl Catal A Gen 213:47–63CrossRefGoogle Scholar
  14. 14.
    Velu S, Suzuki K, Okazaki M, Kapoor MP, Osaki T, Ohashi F (2000) J Catal 194:373–384CrossRefGoogle Scholar
  15. 15.
    Velu S, Suzuki K, Osaki T (1999) Chem Commun 2341–2342Google Scholar
  16. 16.
    Fisher IA, Bell AT (1999) J Catal 184:357–376CrossRefGoogle Scholar
  17. 17.
    Fisher IA, Bell AT (1998) J Catal 178:153–173CrossRefGoogle Scholar
  18. 18.
    Fisher IA, Bell AT (1997) J Catal 172:222–237CrossRefGoogle Scholar
  19. 19.
    Xi JY, Wang ZF, Lu GX (2002) Appl Catal A Gen 225:77–86CrossRefGoogle Scholar
  20. 20.
    Yuh J, Nino JC, Sigmund WA (2005) Mater Lett 59:3645–3647CrossRefGoogle Scholar
  21. 21.
    Shi M, Liu N, Xu YD, Wang C, Yuan YR, Majewski P, Aldinger F (2005) J Mater Process Technol 169:179–183CrossRefGoogle Scholar
  22. 22.
    Zyryanov VV, Sadykov VA, Uvarov NF, Alikina GM, Lukashevich AI, Neophytides S, Criado JM (2005) Solid State Ionics 176:2813–2818CrossRefGoogle Scholar
  23. 23.
    Schuyten S, Wolf EE (2006) Catal Lett 106:7–14CrossRefGoogle Scholar
  24. 24.
    Wolf EE, Schuyten SJ, Suh DJ (2007) In: Potyrailo RA, Maier WF (eds) Combinatorial and high-throughput discovery and optimization of catalysts and materials, ch 7, CRC pressGoogle Scholar
  25. 25.
    Patil KC, Aruna ST, Mimani T (2002) Curr Opin Solid State Mater Sci 6:507–512CrossRefGoogle Scholar
  26. 26.
    Mukasyan AS, Epstein P, Dinka P (2007) Proc Combust Inst 31(2):1789–1795CrossRefGoogle Scholar
  27. 27.
    Mukasyan AS, Dinka P (2007) Adv Eng Mater 9:653–657CrossRefGoogle Scholar
  28. 28.
    Dinka P, Mukasyan AS (2005) J Phys Chem B 109:21627–21633CrossRefGoogle Scholar
  29. 29.
    Deshpande K, Mukasyan A, Varma A (2006) J Power Sources 158:60–68CrossRefGoogle Scholar
  30. 30.
    Lan A, Mukasyan A (2007) J Phys Chem 26:9573–9582Google Scholar
  31. 31.
    Osinga TJ, Linsen BG, Vanbeek WP (1967) J Catal 7:277–279CrossRefGoogle Scholar
  32. 32.
    Evans JW, Wainwright MS, Bridgewater AJ, Young DJ (1983) Appl Cat 7:75–83CrossRefGoogle Scholar
  33. 33.
    Scholten JJ, KonvalinJa JA (1969) T Faraday Soc 65:2465CrossRefGoogle Scholar
  34. 34.
    Bond GC, Namijo SN (1989) J Catal 118:507–510CrossRefGoogle Scholar
  35. 35.
    Markmann J, Zimmer P, Birringer R, Chadwick AV (2005) Chem Mater 17:3935–3943CrossRefGoogle Scholar
  36. 36.
    Joo J, Yu T, Kim YW, Park HM, Wu FX, Zhang JZ, Hyeon T (2003) J Am Chem Soc 125:6553–6557CrossRefGoogle Scholar
  37. 37.
    Stevens R (1986) Zirconia and Zirconia ceramics, 2nd edn. Magnesium Elektron Ltd, United KingdomGoogle Scholar
  38. 38.
    Borovinskaya IP, Loryan VE, Grigoryan EA, Salnikova EN, Pershikova NI (1992) Int J SHS 1:131–134Google Scholar
  39. 39.
    Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera I, Navarro RM, Fierro JLG (2003) J Catal 219:389–403CrossRefGoogle Scholar
  40. 40.
    Batista J, Pintar A, Mandrino D, Jenko M, Martin V (2001) Appl Cat A Gen 206:113–124CrossRefGoogle Scholar
  41. 41.
    Molenbroek AM, Haukka S, Clausen BS (1998) J Phys Chem B 102:10680–10689CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Stephen Schuyten
    • 1
  • Peter Dinka
    • 1
  • Alexander S. Mukasyan
    • 1
  • Eduardo Wolf
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations