Catalysis Letters

, Volume 121, Issue 1–2, pp 103–110 | Cite as

Catalytic Method for N-Methyl-4-pyridone Synthesis in the Presence of ZnAl2O4

  • Hanna Grabowska
  • Mirosław Zawadzki
  • Ludwik Syper


A composite oxide ZnAl2O4 was prepared by microwave-assisted hydrothermal treatment, a precursor mixture of hydroxides obtained by precipitation of aluminium and zinc nitrates. Characterization by TEM, XRD and textural studies shows that ZnAl2O4 is nanosized and is a micro/mesoporous material with large a surface area (140 m2/g). The gas phase catalytic methylation of 4-hydroxypyridine in the presence of the ZnAl2O4 catalyst was performed in a continuous process at atmospheric pressure in the temperature range of 240–360 °C. A mixture of O- and N-alkylated products, namely 4-methoxypyridine and N-methyl-4-pyridone were obtained. The alkylation of 4-hydroxypyridine with methanol at 345 °C offered 87.6% selectivity towards N-methyl-4-pyridone with about 89% 4-hydroxypyridine conversion.


4-Hydroxypyridine Zinc aluminate Catalytic gas phase methylation N-Methyl-4-pyridone 



The authors are very grateful to Mrs Ludwina Krajczyk for HRTEM studies and to Prof. Janusz Trawczyński for his help in acidity measurements.


  1. 1.
  2. 2.
    Stetinova V, Grossmann V (2000) Exp Toxicol Pathol 52:473Google Scholar
  3. 3.
    Dyer DJ, Lee VY, Twieg RJ (1997) Liquid Cryst 23:551CrossRefGoogle Scholar
  4. 4.
    You F, Twieg RJ (1999) Tetrahedron Lett 40:8759CrossRefGoogle Scholar
  5. 5.
    Gibson D, Clarke D, Winscom Ch (2000) US Pat 6,841,344Google Scholar
  6. 6.
    Grabowska H, Zawadzki M, Syper L (2006) Appl Catal A: Gen 314:226CrossRefGoogle Scholar
  7. 7.
    Komarneni S, Katsuki H (2002) Pure Appl Chem 74:1537CrossRefGoogle Scholar
  8. 8.
    Rao KJ, Mahesh K, Kumar S (2005) Bull Mater Sci 28:19CrossRefGoogle Scholar
  9. 9.
    Malinger KA, Laubernds K, Son YC, Suib SL (2004) Chem Mater 16:4296CrossRefGoogle Scholar
  10. 10.
    Ren ZW, Zhou DB, Tu SQ (2007) Chin J Catal 8:217Google Scholar
  11. 11.
    International Centre for Diffraction Date, ICDD, PDF-4 + 2005Google Scholar
  12. 12.
    Dollimore D, Heal GR (1964) J Appl Chem 14:109CrossRefGoogle Scholar
  13. 13.
    Wrzyszcz J, Zawadzki M, Trawczyński J, Grabowska H, Miśta W (2001) Appl Catal A: Gen 210:263CrossRefGoogle Scholar
  14. 14.
    Grabowska H, Miśta W, Trawczyński J, Wrzyszcz J, Zawadzki M (2001) Appl Catal A: Gen 220:207CrossRefGoogle Scholar
  15. 15.
    Grabowska H, Zawadzki M, Syper L, Miśta W (2005) Appl Catal A: Gen 292:208CrossRefGoogle Scholar
  16. 16.
    Sparks AK (1972) US Patent 3,670,030Google Scholar
  17. 17.
    Leach BE (1980) US Patent 4,227,024Google Scholar
  18. 18.
    IUPAC Recommendations (1994) Pure Appl Chem 66:1739Google Scholar
  19. 19.
    Di Cosimo JI, Diez VK, Xu M, Iglesia E, Apesteguia CR (1998) J Catal 178:499CrossRefGoogle Scholar
  20. 20.
    Di Cosimo JI, Apesteguia CR, Gines MJL, Iglesia E (2000) J Catal 190:261CrossRefGoogle Scholar
  21. 21.
    Beak P, Bonham J, Lee TJ Jr (1968) J Am Chem Soc 90:1569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hanna Grabowska
    • 1
  • Mirosław Zawadzki
    • 1
  • Ludwik Syper
    • 2
  1. 1.Division of Nanomaterials Chemistry and Catalysis, Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclaw 2Poland
  2. 2.Department of ChemistryTechnical University of WrocławWroclawPoland

Personalised recommendations