Catalysis Letters

, Volume 119, Issue 3–4, pp 319–326 | Cite as

Novel Nanoscale Ceria–Platinum Composite Electrodes for Direct Alcohol Electro-Oxidation

  • Diego J. Díaz
  • Nathan Greenletch
  • Avni Solanki
  • Ajay Karakoti
  • Sudipta Seal


A nanocrystalline Pt/CeO2 composite electrode is fabricated to study the electrochemical oxidation of methanol and ethanol. Three different methods have been developed for the preparation of the composite electrode and are compared in terms of their oxidation efficiencies. In general, all the electrode preparation methodologies show a great enhancement of the oxidation current for the alcohol. However, methods based on the electrodeposition of a ceria rich Pt matrix show the greatest effectiveness of alcohol oxidation. The enhancement of the anodic current is dependent on the particle loading and size distribution in the composite matrix. In general, ceria appears to be an effective alternative to ruthenium in direct alcohol fuel cells.


Direct alcohol fuel cells Ceria Oxidation Catalysis Electrochemistry Methanol 



The authors thank the Office of Research and Commercialization, The Nanoscience Technology Center, The College of Sciences and the Department of Chemistry at the University of Central Florida for their support. Díaz, Seal, Karakoti and Greenletch also wish to thank the Florida Space Grant Consortium for their support throughout a Florida Space Research and Education Grant Program. Seal acknowledges NSF CMII’s support throughout grant 0548815. Díaz also acknowledges UCF’s Materials Characterization Facility (AMPAC) at the University of Central Florida for their facilities.


  1. 1.
    Srinivasan S, Manko DJ, Koch H, Enayetullah MA, Appleby JA (1990) J Power Sources 29:367CrossRefGoogle Scholar
  2. 2.
    Lemons RA (1990) J Power Sources 29:251CrossRefGoogle Scholar
  3. 3.
    US Department of Energy, Office of Fossil Energy (2004) Fuel cell handbook. National Energy Technology Laboratory Report, 7th ednGoogle Scholar
  4. 4.
    Lashway RW (2005) MRS Bull 30:581Google Scholar
  5. 5.
    Huang S, Chang S, Lin C, Chen C, Yeh C (2006) J Phys Chem B 110:23300CrossRefGoogle Scholar
  6. 6.
    Shivhare MR, Allen RG, Scott K, Morris AJ, Martin EB (2006) J Electroanal Chem 595:145CrossRefGoogle Scholar
  7. 7.
    Maillard F, Gloaguen F, Hann F, Léger JM (2002) Fuell Cells 2:143CrossRefGoogle Scholar
  8. 8.
    Wang ZB, Yin GP, Shi PF, Sun YC (2006) Electrochem Solid State Lett 9:A13CrossRefGoogle Scholar
  9. 9.
    Wei ZD, Li LL, Luo YH, Yan C, Sun CX, Yin GZ, Shen PK (2006) J Phys Chem B 110:26055CrossRefGoogle Scholar
  10. 10.
    Lee K, Savadogo O, Ishihara A, Mitsushima S, Kamiya N, Ota K (2006) J Electrochem Soc 153:A20CrossRefGoogle Scholar
  11. 11.
    Wang X, Waje M, Yan Y (2004) J Electrochem Soc 151:A2183CrossRefGoogle Scholar
  12. 12.
    Lin Y, Cui X (2005) Languir 21:11474CrossRefGoogle Scholar
  13. 13.
    Johnston CM, Strbac S, Lewera A, Sibert E, Wieckowski A (2006) Langmuir 22:8229CrossRefGoogle Scholar
  14. 14.
    Xu C, Shen PK (2005) J Power Sources 142:27CrossRefGoogle Scholar
  15. 15.
    Bai Y, Wu J, Xi J, Wang J, Zhu W, Chen L, Qiu X (2005) Electrochem Commun 7:1087CrossRefGoogle Scholar
  16. 16.
    Forti JC, Olivi P, de Andrade AR (2003) J Electrochem Soc 150:E222CrossRefGoogle Scholar
  17. 17.
    Kim J, Park S (2003) J Electrochem Soc 150:E560CrossRefGoogle Scholar
  18. 18.
    Bergamaski K, Gomes JF, Goi BE, Nart FC (2003) Ecletica Quimica 28:87Google Scholar
  19. 19.
    Mann J, Yao N, Bocarsly AB (2006) Langmuir 22:10432CrossRefGoogle Scholar
  20. 20.
    Gupta SS, Datta J (2005) J Chem Sci 117:337CrossRefGoogle Scholar
  21. 21.
    González MJ, Hable CT, Wrighton MS (1998) J Phys Chem B 102:9881CrossRefGoogle Scholar
  22. 22.
    Pendelow JS, Babu PK, Wieckowski A (2005) Curr Opinion Sol State Mat Sci 9:37CrossRefGoogle Scholar
  23. 23.
    McGovern MS, Waszzuk P, Wieckowski A (2006) Electrochim Acta 51:1194CrossRefGoogle Scholar
  24. 24.
    Cui S, Liu J, Selvan ME, Keffer DJ, Edwards BJ, Steele WV (2007) J Phys Chem B 111:2208CrossRefGoogle Scholar
  25. 25.
    Saito M, Tsuzuki S, Hayamizu K, Okada T (2006) J Phys Chem B 110:24410CrossRefGoogle Scholar
  26. 26.
    Watanabe M, Motoo SJ (1975) J Electroanal Chem 60:275CrossRefGoogle Scholar
  27. 27.
    Lasch K, Jorissen L, Garche J (1999) J Power Sources 84:225CrossRefGoogle Scholar
  28. 28.
    Yajima T, Uchida H, Watanabe M (2004) J Phys Chem B 108:2654CrossRefGoogle Scholar
  29. 29.
    Deshpande S, Patil S, Kuchibhatla SV, Seal S (2005) Appl Phys Lett 87:122113CrossRefGoogle Scholar
  30. 30.
    Carrijo RM, Romero JR (2000) Quimica Nova 23:331Google Scholar
  31. 31.
    Campos CL, Roldán C, Aponte M, Ishikawa Y, Cabrera CR (2005) J Electroanal Chem 581:206CrossRefGoogle Scholar
  32. 32.
    Takahashi M, Mori T, Vinu A, Kobayashi H, Drennan J, Ou DR (2006) J Mater Res 21:2314CrossRefGoogle Scholar
  33. 33.
    Patil S, Kuiry SC, Seal S, Vanfleet R (2002) J Nanopart Res 4:433CrossRefGoogle Scholar
  34. 34.
    Saczk AA, Okumura LL, de Oliveira MD, Zanoni MVB, Stradiotto N (2005) Anal Sci 21:441CrossRefGoogle Scholar
  35. 35.
    Wang HF, Liu ZP (2007) J Phys Chem C 111:2007; ASAP Web Release Date: 28 Jul 2007Google Scholar
  36. 36.
    Chang SC, Leung LWH, Weaver M (1990) J Phys Chem 94:6013CrossRefGoogle Scholar
  37. 37.
    Camara GA, Iwasita T (2005) J Electroanal Chem 578:315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Diego J. Díaz
    • 1
    • 2
  • Nathan Greenletch
    • 1
  • Avni Solanki
    • 1
  • Ajay Karakoti
    • 3
  • Sudipta Seal
    • 2
    • 3
    • 4
  1. 1.Department of ChemistryUniversity of Central FloridaOrlandoUSA
  2. 2.Nanoscience Technology CenterUniversity of Central FloridaOrlandoUSA
  3. 3.Mechanical, Material and, Aerospace Engineering (MMAE) DepartmentUniversity of Central FloridaOrlandoUSA
  4. 4.Advanced Materials Processing and Analysis Center (AMPAC)University of Central FloridaOrlandoUSA

Personalised recommendations