Skip to main content
Log in

CO Adsorbed Infrared Spectroscopy Study of Ni/Al2O3 Catalyst for CO2 Reforming of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CO adsorbed infrared spectroscopy study was conducted in this work in order to better understand the significantly improved anti-coke performance of Ni/Al2O3 catalyst obtained via argon glow discharge plasma treatment. The present study revealed a significant decrease of linear to bridge (L/B) adsorbed CO for glow discharge plasma treated Ni/Al2O3, compared to that for untreated Ni/Al2O3, indicating an enhancement of close packed plane concentration. This structure change leads to lower methane turnover frequency (TOF) and better balance of carbon formation-gasification, resulting in better anti-coke property of Ni/Al2O3 for CO2 reforming of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Takanabe K, Nagaoka K, Aika KI (2005) Catal Lett 102:153

    Article  CAS  Google Scholar 

  2. Shamsi A (2006) Catal Lett 109:189

    Article  CAS  Google Scholar 

  3. Wei JM, Iglesia E, (2004) J Catal 224:370

    Article  CAS  Google Scholar 

  4. Bradford MCJ, Vannice MA (1996) Appl Catal A 142:97

    Article  CAS  Google Scholar 

  5. Choudhary TV, Goodman DW (2000) J Mol Catal A 163:9

    Article  CAS  Google Scholar 

  6. Burghgraef H, Jansen APJ, Santen RAV (1995) Surf Sci 324:345

    Article  CAS  Google Scholar 

  7. Rostrup-Nielsen JR, Nørskov JK (2006) Top Catal 40:45

    Article  CAS  Google Scholar 

  8. Trimm DL (1999) CatalToday 49:3

    CAS  Google Scholar 

  9. Rostrup-Nielsen JR, Hansen J-HB (1993) J Catal 144:38

    Article  CAS  Google Scholar 

  10. Nikolla E, Holewinski A, Schwank J, Linic S (2006) J Am Chem Soc 128:11354

    Article  CAS  Google Scholar 

  11. Juan-Juan J, Román-Martínez MC, Illán-Gómez MJ (2006) Appl Catal A 301:9

    Article  CAS  Google Scholar 

  12. Zhu XL, Huo PP, Zhang YP, Liu CJ (2006) Ind Eng Chem Res 45:8604

    Article  CAS  Google Scholar 

  13. Crisafulli C, Scirè S, Maggiore R, Minicò S, Galvagno S (1999) Catal Lett 59:21

    Article  CAS  Google Scholar 

  14. Crisafulli C, Scirè S, Minicò S, Solarino L (2002) Appl Catal A 225:1

    Article  CAS  Google Scholar 

  15. JAC Dias, Assaf JM (2004) J Power Sources 130:106

    Article  CAS  Google Scholar 

  16. Blyholder G (1964) J Phys Chem 68:2772

    Article  CAS  Google Scholar 

  17. Primet M, Dalmon JA, Martin GA (1977) J Catal 46:25

    Article  CAS  Google Scholar 

  18. Rochester CH, Terrell RJ (1977) J Chem Soc Faraday Trans I 73:609

    Article  CAS  Google Scholar 

  19. Blackmond DG, Ko EI (1985) J Catal 96:210

    Article  CAS  Google Scholar 

  20. Wielers AFH, Aaftink GJM, Geus JW (1985) Appl Surf Sci 20:564

    Article  CAS  Google Scholar 

  21. Peri JB (1984) J Catal 86:84

    Article  CAS  Google Scholar 

  22. Anderson JA, Rodrigo MT, Daza L, Mendioroz S (1993) Langmuir 9:2485

    Article  CAS  Google Scholar 

  23. Hadjiivanov K, Mihaylov M, Klissurski D, Stefanov P, Abadjieva N, Vassileva E, Mintchev L (1999) J Catal 185:314

    Article  CAS  Google Scholar 

  24. Mihaylov M, Hadjiivanov K, Knözinger H (2001) Catal Lett 76:59

    Article  CAS  Google Scholar 

  25. Derrouiche S, Bianchi D (2006) Appl Catal A 313:208

    Article  CAS  Google Scholar 

  26. Shen WM, Dumesic JA, Hill CG (1981) J Catal 68:152

    Article  CAS  Google Scholar 

  27. Rao KM, Spoto G, Zechina A (1989) Langmuir 5:319

    Article  CAS  Google Scholar 

  28. Zhang ZL, Verykios XE (1994) Catal Today 21:589

    Article  CAS  Google Scholar 

  29. Hou ZY, Yokota O, Tanaka T, Yashima T (2003) Catal Lett 89:121

    Article  CAS  Google Scholar 

  30. Erdohelyi A, Cserenyi J, Solymosi F (1993) J Catal 141:287

    Article  CAS  Google Scholar 

  31. Mark MF, Maier WF (1994) Angew Chem Int Ed Engl 33:1657

    Article  Google Scholar 

  32. Wang SB, Lu GQM (1998) Appl Catal B 16:269

    Article  CAS  Google Scholar 

  33. Wang SB, Lu GQ (1999) Ind Eng Chem Res 38:2615

    Article  CAS  Google Scholar 

  34. Zhu XL, Zhang YP, Cheng DG, Liu CJ (2007) Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Submitted, 2007

Download references

Acknowledgment

The supports from 973 project (under contract 2005CB221406) and National Natural Science Foundation of China (under contract 20490203) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-jun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Zhang, Yp. & Liu, Cj. CO Adsorbed Infrared Spectroscopy Study of Ni/Al2O3 Catalyst for CO2 Reforming of Methane. Catal Lett 118, 306–312 (2007). https://doi.org/10.1007/s10562-007-9205-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9205-7

Keywords

Navigation