Advertisement

Catalysis Letters

, Volume 117, Issue 3–4, pp 99–101 | Cite as

A new, simple synthesis of 1,2-dihydroquinolines via cyclocondensation using zeolite catalyst

  • Adrienn Hegedüs
  • Zoltán Hell
  • Tamás Vargadi
  • Attila Potor
  • Iván Gresits
Article

Abstract

A new, environmentally-friendly synthesis of dihydroquinolines from aniline and ketones using a small pore size zeolite as catalyst is described. This method is simple, cheap and gives the dihydroquinolines in high yield.

Keywords

dihydroquinolines zeolite green chemistry 

Notes

Acknowledgments

This work was supported by the Hungarian Research Fund Programs (OTKA Grant No. T 037757) and the common EU-Hungarian G.V.O.P. project Nr 3.2.1-2004/0346. The authors are grateful to Dr Laurence Pirault-Roy and the staff of Laboratoire de Catalyse en Chimie Organique of Université de Poitiers for the determinations of the acid sites.

References

  1. 1.
    Balayer A., Sevenet T., Schaller H., Hamid A., Hadi A., Chiaroni A., Riche C., Pais M. (1993) Nat. Prod. Lett. 2:61Google Scholar
  2. 2.
    Doepke W., Fritsch G. (1969) Pharmazie 24:782Google Scholar
  3. 3.
    Parello J. (1968) Bull. Soc. Chim. Fr. 3:1117Google Scholar
  4. 4.
    Abe F., Yamauchi T., Shibuya H., Kitagawa I., Yamashita M. (1998) Chem. Pharm. Bull. 46:1235Google Scholar
  5. 5.
    Johnson J.V. (1989) J. Med. Chem. 32:19429CrossRefGoogle Scholar
  6. 6.
    T. Aono, T. Doi and K. Fukatsu, JP 042823701992 A2 (1992).Google Scholar
  7. 7.
    G. de Nanteuil, J. Duhault, D. Ravel and Y. Herve, EP 528734 (1993).Google Scholar
  8. 8.
    B.C. Pearce and J.J. Wright, US 5411969 (1995).Google Scholar
  9. 9.
    T.K. Jones, D.T. Winn, L. Zhi, L.G. Hamann, C.M. Tegley and C.L.F. Pooley, US 5688808 (1997).Google Scholar
  10. 10.
    T.K. Jones, M.E. Goldman, C.L.F. Pooley, D.T. Winn, J.E. Edwards, S.J. West, C.M. Tegley, L. Zhi and L.G. Hamann, WO 9619458 (1996).Google Scholar
  11. 11.
    M.J. Coughlan, S.W. Elmore, M.E. Kort, P.R. Kym, J.L. Moore, J.K. Pratt, A.X. Wang, J.P. Edwards and T.K. Jones, WO 9941256 (1999).Google Scholar
  12. 12.
    Cossy J., Poitevin C., Gomez Pardo D., Peglion J.-L., Dessinges A. (1998) Tetrahedron Lett. 39:2965CrossRefGoogle Scholar
  13. 13.
    Kobayashi K., Kawakita M., Morikawa O., Konishi H. (1995) Chem. Lett. 7:575CrossRefGoogle Scholar
  14. 14.
    Walter H., Schneider J. (1995) Heterocycles 41:1251CrossRefGoogle Scholar
  15. 15.
    Edwards J.P., Ringgenberg J.D., Jones T.K. (1998) Tetrahedron Lett. 39:5139CrossRefGoogle Scholar
  16. 16.
    A. Arduini, F. Bigi, G. Casiraghi, G. Casnati and G. Sartori Synthesis (1981) 975.Google Scholar
  17. 17.
    Skraup Z.H. (1880) Berichte 13:2086Google Scholar
  18. 18.
    Combes A. (1888) Bull. Soc. Chim. France 49:89Google Scholar
  19. 19.
    Doebner O., Miller W.v. (1883) Chem. Ber. 16:2464CrossRefGoogle Scholar
  20. 20.
    Craig D. (1938) J. Am. Chem. Soc. 60:1458CrossRefGoogle Scholar
  21. 21.
    Theoclitou M.-E., Robinson L.A. (2002) Tetrahedron Lett. 43:3907CrossRefGoogle Scholar
  22. 22.
    G. Klopp, Ph.D. Thesis, Budapest (1975)Google Scholar
  23. 23.
    The characterization of the Ersorb products was described elsewhere, see e.g. Ref. 30. Furthermore, tablets (diameter: 10 mm, mass: 0,3 g, pression: 100 bar for 1 min) from the powdered material were subjected to isotopic excited X-ray fluorescence analysis. Three toroid exciting sources were used: 55Fe, 125I and 241 Am for the determination of the elements of groups A, B, and C, respectively. In group A near the major components Al, Si, K, Ca, and Mg the minor elements P, Cl, and Ti were found in an amount less than 50 ppm. In group B near the larger amount of Fe, Rb and Sr were detected in the 40–120 ppm range, while Cr, Mn, Ni, Cu, Zn, Mo, Pd, and Ag were found as minor components. In group C Cs and Ba were found as minor constituentsGoogle Scholar
  24. 24.
    Cwik A., Hell Z., Hegedüs A., Finta Z., Horváth Z. (2002) Tetrahedron Lett. 43:3985CrossRefGoogle Scholar
  25. 25.
    Hegedüs A., Vígh I., Hell Z. (2004) Heteroatom Chem. 15:428CrossRefGoogle Scholar
  26. 26.
    Hegedüs A., Vígh I., Hell Z. (2004) Synth. Commun. 32:4145CrossRefGoogle Scholar
  27. 27.
    Hegedüs A., Hell Z. (2004) Tetrahedron Lett. 45:8553CrossRefGoogle Scholar
  28. 28.
    Hegedüs A., Hell Z. (2006) Org. Biomol. Chem. 4:1220CrossRefGoogle Scholar
  29. 29.
    Hegedüs A., Hell Z., Vígh I. (2006) Synth. Commun. 36:129CrossRefGoogle Scholar
  30. 30.
    Hegedüs A., Hell Z., Potor A. (2005) Catal. Lett. 105:229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Adrienn Hegedüs
    • 1
  • Zoltán Hell
    • 1
  • Tamás Vargadi
    • 1
  • Attila Potor
    • 1
  • Iván Gresits
    • 2
  1. 1.Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of Chemical and Environmental Process EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations