Advertisement

Catalysis Letters

, Volume 117, Issue 3–4, pp 140–145 | Cite as

Oxidative dehydrogenation of ethane over Co–BaCO3 catalysts using CO2 as oxidant: effects of Co promoter

  • Xin Zhang
  • Qing Ye
  • Boqing Xu
  • Dehua He
Article

Abstract

Co–BaCO3 catalysts exhibited high catalytic performance for oxidative dehydrogenation of ethane (ODE) using CO2 as oxidant. The maximal formation rate of C2H4 was 0.264 mmol · min−1 · (g · cat.)−1 (48.0% C2H6 conversion, 92.2% C2H4 selectivity, 44.3% C2H4 yield) on 7 wt% Co–BaCO3 catalyst at 650 °C and 6000 ml. (g · cat.)−1. h−1. Co–BaCO3 catalysts were comparatively characterized by XRF, N2 isotherm adsorption-desorption, XRD, H2-TPR and LRs. It was found that Co4+–O species were active sites on these catalysts in ODE with CO2. The redox cycle of Co–O species played an important role on the catalytic performance of Co–BaCO3 catalysts. On the other hand, the co-operation of BaCO3 and BaCoO3 was considered to be one of possible reasons for the high catalytic activity of these catalysts.

Keywords

oxidative dehydrogenation Co–BaCO3 ethane ethene CO2 

References

  1. 1.
    Bradford M.C.J., Vannice M.A.(1991) . Catal. Rev. Sci. Eng. 41:1CrossRefGoogle Scholar
  2. 2.
    Zhang F.Z., Xu B.Q.(2002) . Prog. Chem. 14:54Google Scholar
  3. 3.
    Ge X., Shen J.Y. (2001) . Chem. J. Chin. Univ. 22(12):2085Google Scholar
  4. 4.
    K. Nakagawa, M. Okamura, N. Ikenaga, T. Suzuki and T. Kobayashic, J. Chem. Soc. Chem. Comm. (1998) 1025.Google Scholar
  5. 5.
    Kiyoharu N., Chiaki K., Yuichiro I. (2000). Catal. Lett. 64:215CrossRefGoogle Scholar
  6. 6.
    Krylov O.V., Mamedov A.Kh., Mirzabekova S.R.(1995) . Catal. Today 24:371CrossRefGoogle Scholar
  7. 7.
    Wang S., Murata K., Hayakawa T., Suzuki K.(1999) . Catal. Lett. 63:59CrossRefGoogle Scholar
  8. 8.
    Wang S., Murata K., Hayakawa T., Suzuki K. (2000). Appl. Catal. A. 156:1Google Scholar
  9. 9.
    Xu L., Lin L., Wang Q. et al. (1998). Stud. Surf. Sci. Catal. 119:605Google Scholar
  10. 10.
    Ge X., Zhu M., Shen J.(2002). React. Kinet. Catal. Lett. 77(1):103CrossRefGoogle Scholar
  11. 11.
    Mizabekova S.R., Mamedov A.Kh., Aliev V.S.(1992) . React. Kinet. Catal. Lett. 47(2):159CrossRefGoogle Scholar
  12. 12.
    Mizabekova S.R., Mamedov A.Kh., Krylov O.V. (1997) . Kinet. Katal. 38(5):651Google Scholar
  13. 13.
    S. Nishama, Y. Sasaki and H. Okada, JP 05 170 673, 1993Google Scholar
  14. 14.
    Xu L., Liu J., Yang H.(1999) . Catal. Lett. 62:185CrossRefGoogle Scholar
  15. 15.
    L. Xu, S. Zhang and Q. Wang, CN 1 181 993A, 1998Google Scholar
  16. 16.
    Liu Y., Xue J., Liu X., Li S.B.(1998) . Stud. Surf. Sci. Catal. 119:593Google Scholar
  17. 17.
    Solymosi F., Nemeth R.(1999). Catal. Lett. 62:197CrossRefGoogle Scholar
  18. 18.
    Valenzuela R.X., Bueno G., Corberan V.C., Xu Y.D., Chen C. (2000). Catal. Today, 61:43CrossRefGoogle Scholar
  19. 19.
    Valenzuela R.X., Bueno G., Sobles A., Sapina F., Martinez E, Cortes Corberan V. (2001) . Catal. Lett. 15(3/4):181Google Scholar
  20. 20.
    Mimura N., Takahara I., Inaba M., Okamoto M., Murata K. (2002) . Catal. Comm. 3:257CrossRefGoogle Scholar
  21. 21.
    Y.L. Bi, V.C. Corberan, H. Zhuang and K.J. Zhen, Stud. Surf. Sci. Catal. 153 (2004) 343Google Scholar
  22. 22.
    Zhao X., Wang X. (2006). Catal. Comm. 7:633CrossRefGoogle Scholar
  23. 23.
    Pyatuisky Yu.I., Ilcherko N.L., Raevskaya L.N. (2000) . Stud. Surf. Sci. Catal. 130:707CrossRefGoogle Scholar
  24. 24.
    Dai H.X., Ng C.F., Au C.T. (2000) . Stud. Surf. Sci. Catal. 130:1757CrossRefGoogle Scholar
  25. 25.
    Sekiya T., Mochida N., Ohtsuka A. (1994) . J. Non-crystal. Solids 168:106CrossRefGoogle Scholar
  26. 26.
    Mestl G., Rosynek M.P., Lunsford J.H.(1997) . J. Phys. Chem. B 101:9321CrossRefGoogle Scholar
  27. 27.
    Mestl G., Rosynek M.P., Lunsford J.H. (1997) . J. Phys. Chem. B 101:9329CrossRefGoogle Scholar
  28. 28.
    Pasierb P., Komorniki S., Rokita M., Rekas M. (2001) . J. Mol. Struct. 596:515CrossRefGoogle Scholar
  29. 29.
    Rao C.N.R. (1963) Chemical Application of Infrared spectroscopy. Academic Press, New York. pp 337Google Scholar
  30. 30.
    Milt V.G., Ulla M.A., Miro E.E. (2005). Appl. Catal. B 57:13CrossRefGoogle Scholar
  31. 31.
    Rössel M., Höche H.R., Leipner H.S., Völtzke D., Abicht H.P., Hollricher O., Müller J., Gablenz S. (2004) . Anal. Bioanal. Chem. 380:157CrossRefGoogle Scholar
  32. 32.
    Z. Dang, J. Gu, J. Lin, D. Yang and J. Chem. Soc. Chem. Comm. (1996) 1901Google Scholar
  33. 33.
    Dang Z., Gu J., Lin J., Yang D. (1998) . Catal. Lett. 54:129CrossRefGoogle Scholar
  34. 34.
    Au C.T., He H., Lai S.Y., Ng C.F. (1996) . J. Catal. 163:399CrossRefGoogle Scholar
  35. 35.
    Au C.T., Zhang Y.Q., He H., Lai S.Y., Ng C.F.(1997) . J. Catal. 167:354CrossRefGoogle Scholar
  36. 36.
    Au C.T., Chen K.D., Ng C.F. (1998). Appl. Catal. A. 107:81Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingP.R. China

Personalised recommendations