Skip to main content
Log in

Oxidative dehydrogenation of ethane over Co–BaCO3 catalysts using CO2 as oxidant: effects of Co promoter

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Co–BaCO3 catalysts exhibited high catalytic performance for oxidative dehydrogenation of ethane (ODE) using CO2 as oxidant. The maximal formation rate of C2H4 was 0.264 mmol · min−1 · (g · cat.)−1 (48.0% C2H6 conversion, 92.2% C2H4 selectivity, 44.3% C2H4 yield) on 7 wt% Co–BaCO3 catalyst at 650 °C and 6000 ml. (g · cat.)−1. h−1. Co–BaCO3 catalysts were comparatively characterized by XRF, N2 isotherm adsorption-desorption, XRD, H2-TPR and LRs. It was found that Co4+–O species were active sites on these catalysts in ODE with CO2. The redox cycle of Co–O species played an important role on the catalytic performance of Co–BaCO3 catalysts. On the other hand, the co-operation of BaCO3 and BaCoO3 was considered to be one of possible reasons for the high catalytic activity of these catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bradford M.C.J., Vannice M.A.(1991) . Catal. Rev. Sci. Eng. 41:1

    Article  Google Scholar 

  2. Zhang F.Z., Xu B.Q.(2002) . Prog. Chem. 14:54

    Google Scholar 

  3. Ge X., Shen J.Y. (2001) . Chem. J. Chin. Univ. 22(12):2085

    CAS  Google Scholar 

  4. K. Nakagawa, M. Okamura, N. Ikenaga, T. Suzuki and T. Kobayashic, J. Chem. Soc. Chem. Comm. (1998) 1025.

  5. Kiyoharu N., Chiaki K., Yuichiro I. (2000). Catal. Lett. 64:215

    Article  Google Scholar 

  6. Krylov O.V., Mamedov A.Kh., Mirzabekova S.R.(1995) . Catal. Today 24:371

    Article  CAS  Google Scholar 

  7. Wang S., Murata K., Hayakawa T., Suzuki K.(1999) . Catal. Lett. 63:59

    Article  CAS  Google Scholar 

  8. Wang S., Murata K., Hayakawa T., Suzuki K. (2000). Appl. Catal. A. 156:1

    Google Scholar 

  9. Xu L., Lin L., Wang Q. et al. (1998). Stud. Surf. Sci. Catal. 119:605

    CAS  Google Scholar 

  10. Ge X., Zhu M., Shen J.(2002). React. Kinet. Catal. Lett. 77(1):103

    Article  CAS  Google Scholar 

  11. Mizabekova S.R., Mamedov A.Kh., Aliev V.S.(1992) . React. Kinet. Catal. Lett. 47(2):159

    Article  Google Scholar 

  12. Mizabekova S.R., Mamedov A.Kh., Krylov O.V. (1997) . Kinet. Katal. 38(5):651

    Google Scholar 

  13. S. Nishama, Y. Sasaki and H. Okada, JP 05 170 673, 1993

  14. Xu L., Liu J., Yang H.(1999) . Catal. Lett. 62:185

    Article  CAS  Google Scholar 

  15. L. Xu, S. Zhang and Q. Wang, CN 1 181 993A, 1998

  16. Liu Y., Xue J., Liu X., Li S.B.(1998) . Stud. Surf. Sci. Catal. 119:593

    CAS  Google Scholar 

  17. Solymosi F., Nemeth R.(1999). Catal. Lett. 62:197

    Article  CAS  Google Scholar 

  18. Valenzuela R.X., Bueno G., Corberan V.C., Xu Y.D., Chen C. (2000). Catal. Today, 61:43

    Article  CAS  Google Scholar 

  19. Valenzuela R.X., Bueno G., Sobles A., Sapina F., Martinez E, Cortes Corberan V. (2001) . Catal. Lett. 15(3/4):181

    CAS  Google Scholar 

  20. Mimura N., Takahara I., Inaba M., Okamoto M., Murata K. (2002) . Catal. Comm. 3:257

    Article  CAS  Google Scholar 

  21. Y.L. Bi, V.C. Corberan, H. Zhuang and K.J. Zhen, Stud. Surf. Sci. Catal. 153 (2004) 343

    Google Scholar 

  22. Zhao X., Wang X. (2006). Catal. Comm. 7:633

    Article  CAS  Google Scholar 

  23. Pyatuisky Yu.I., Ilcherko N.L., Raevskaya L.N. (2000) . Stud. Surf. Sci. Catal. 130:707

    Article  Google Scholar 

  24. Dai H.X., Ng C.F., Au C.T. (2000) . Stud. Surf. Sci. Catal. 130:1757

    Article  Google Scholar 

  25. Sekiya T., Mochida N., Ohtsuka A. (1994) . J. Non-crystal. Solids 168:106

    Article  CAS  Google Scholar 

  26. Mestl G., Rosynek M.P., Lunsford J.H.(1997) . J. Phys. Chem. B 101:9321

    Article  CAS  Google Scholar 

  27. Mestl G., Rosynek M.P., Lunsford J.H. (1997) . J. Phys. Chem. B 101:9329

    Article  CAS  Google Scholar 

  28. Pasierb P., Komorniki S., Rokita M., Rekas M. (2001) . J. Mol. Struct. 596:515

    Article  Google Scholar 

  29. Rao C.N.R. (1963) Chemical Application of Infrared spectroscopy. Academic Press, New York. pp 337

    Google Scholar 

  30. Milt V.G., Ulla M.A., Miro E.E. (2005). Appl. Catal. B 57:13

    Article  CAS  Google Scholar 

  31. Rössel M., Höche H.R., Leipner H.S., Völtzke D., Abicht H.P., Hollricher O., Müller J., Gablenz S. (2004) . Anal. Bioanal. Chem. 380:157

    Article  CAS  Google Scholar 

  32. Z. Dang, J. Gu, J. Lin, D. Yang and J. Chem. Soc. Chem. Comm. (1996) 1901

  33. Dang Z., Gu J., Lin J., Yang D. (1998) . Catal. Lett. 54:129

    Article  CAS  Google Scholar 

  34. Au C.T., He H., Lai S.Y., Ng C.F. (1996) . J. Catal. 163:399

    Article  CAS  Google Scholar 

  35. Au C.T., Zhang Y.Q., He H., Lai S.Y., Ng C.F.(1997) . J. Catal. 167:354

    Article  CAS  Google Scholar 

  36. Au C.T., Chen K.D., Ng C.F. (1998). Appl. Catal. A. 107:81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Ye, Q., Xu, B. et al. Oxidative dehydrogenation of ethane over Co–BaCO3 catalysts using CO2 as oxidant: effects of Co promoter. Catal Lett 117, 140–145 (2007). https://doi.org/10.1007/s10562-007-9122-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9122-9

Keywords

Navigation