Catalysis Letters

, Volume 117, Issue 3–4, pp 136–139 | Cite as

Synthesis and characterization of nanocrystalline Mo–V–W–Fe–O mixed oxide catalyst and its performance in selective methanol oxidation

  • Badekai Ramachandra Bhat
  • Jung-Sik Choi
  • Tae-Hwan Kim


A mixed oxide catalyst containing Mo, V, W and Fe with the composition of 63, 23, 09 and 06 wt% respectively for the selective oxidation of the methanol to formaldehyde is in reported in this paper for the first time. The characterization of the catalyst was done using BET surface analysis, X-ray diffraction (XRD), Infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Energy dispersive X-ray (EDX). The mixed oxide after calcination at 673 K in N2 which was subjected for the thermal activation in N2flow at 813 K was used for the methanol selective oxidation. The thermal treatment shows enhanced catalytic performance. Thermal activation of the nanocrystalline Mo0.63V23W0.09Fe0.06O x precursor oxide in nitrogen atmospheres induces partial crystallization of a Mo5O14-type oxide only in a narrow temperature range up to 813 K. XRD showed that the thermally activated mixed oxide consists of a mixture of a majority of crystalline Mo5O14-type oxide and of small amounts of crystalline MoO3-type and MoO2-type oxides. The structural analysis suggests that the improvement of the catalytic performance of the MoVWFe oxide catalyst in the selective oxidation of methanol is related to the formation of the catalytic active site such as Mo5O14-type mixed oxide.


formaldehyde mixed oxide methanol selective oxidation 



We gratefully acknowledge financial support from the CDRS Center, one of the 21st Century Frontier R&D Programs funded by the Ministry of Science and Technology of Korea. One of the authors is grateful to KOSEF for the Brain Pool fellowship and thankful to NITK, Surathkal, India.


  1. 1.
    G. Reuss, W. Disteldorf, O. Grundler, A. Hilt, Ullmann’s Encylopedia of Industrial Chemistry, 5th. Ed, Vol.A11, VCH, Weinheim (1992) p. 619.Google Scholar
  2. 2.
    Stiles B., Koch T.A.(1995) . Catalyst Manufacture, 2nd Ed. Marcel Dekker, NewYorkGoogle Scholar
  3. 3.
    Cao Y., Dai W.L., Deng J.F. (1997) . Appl. Catal. A 158:L27–L34CrossRefGoogle Scholar
  4. 4.
    Nagy A., Mestl G. (1999) . Appl. Catal. A 188:337CrossRefGoogle Scholar
  5. 5.
    Qian M., Liauw M.A., Emig G. (2003) . Appl. Catal. A 238:211CrossRefGoogle Scholar
  6. 6.
    Li J.L., Dai W.L., Dong Y., Deng J.F. (2000) . Met. Lett. 44:233CrossRefGoogle Scholar
  7. 7.
    Dai W.L., Liu Q., Cao Y., Deng J.F. (1998) . Appl. Catal. A 175:83CrossRefGoogle Scholar
  8. 8.
    Pestryakov A.N., Bogdanchikova N.E., Gericke A.K.(2004) . Catal. Today 91:49CrossRefGoogle Scholar
  9. 9.
    Diakov V., Lafarga D., Varma A. (2001) . Catal. Today 67:159CrossRefGoogle Scholar
  10. 10.
    Diakov V., Blackwell B., Varma A. (2002) . Chem. Eng. Science 57:1563CrossRefGoogle Scholar
  11. 11.
    Soares A.P.V., Portela M.F., Kiennemann A. (2001) . Catal. Comm. 2:159CrossRefGoogle Scholar
  12. 12.
    Diakov V., Varma A. (2003) . Chem. Eng. Sci. 58:801CrossRefGoogle Scholar
  13. 13.
    Soares A.P.V., Portela M.F., Kiennemann A., Hilaire L., Millet J.M.M. (2001) . Appl. Catal. A 206:221CrossRefGoogle Scholar
  14. 14.
    D. Moy, R. Hoch, EP Patent, 1176234 A9 (2002).Google Scholar
  15. 15.
    Soares A.P.V., Portela M.F., Kiennemann A., Hilaire L. (2003) . Chem.Eng. Sci. 58:1315CrossRefGoogle Scholar
  16. 16.
    Tae Hwan Kim, B. Ramachandra, Jung Sik Choi, M.B. Saidutta, Ko Yeon Choo, Sun-Dal Song, Young-Woo Rhee, Catal. Lett. 98 (2004) 161.Google Scholar
  17. 17.
    E. Canadell, M.-H. Wangbo, Chem. Rev. (1991) 965Google Scholar
  18. 18.
    J. Haber, in: Handbook of Heterogeneous Catalysis, Vol. 5, eds. G. Ertl, H. Knözinger, J. Weitkamp (Wiley, VCH, Weinheim, 1997) p. 2253ff.Google Scholar
  19. 19.
    Mestle G., Linsmeier Ch., Gottschall R., Dieterle M., Find J., Herein D., Jager J., Uchida Y., Schlogl R. (2000). J. Mol. Catal. A: Chemical 162:463CrossRefGoogle Scholar
  20. 20.
    Werner H., Timpe O., Herein D., Uchida Y., Pfaender N., Wild U., Schlögl R., Hibst H. (1997) . Catal. Lett. 44:153CrossRefGoogle Scholar
  21. 21.
    Oshihara K., Nakamura Y., Sakuma M., Ueda W.(2001). Catal. Today 71:153CrossRefGoogle Scholar
  22. 22.
    N. Bertolini, N. Ferlazzo, US Patent, 4289654 (1981).Google Scholar
  23. 23.
    Kihlborg L. (1969) . Acta Chem. Scand. 23:1834Google Scholar
  24. 24.
    Ekström T., Nygren M. (1972) . Acta Chem. Scand. 26:1827CrossRefGoogle Scholar
  25. 25.
    Yamazoe N., Kihlborg L. (1975) . Acta Cryst. B31:1666CrossRefGoogle Scholar
  26. 26.
    Brückman K., Grabowski R., Haber J., Mazurkiewicz A., Slocynski J., Wiltowski T. (1987) . J. Catal. 104:71CrossRefGoogle Scholar
  27. 27.
    Gai P.L., Thoeni W., Hirsch P.B. (1979) . J. Less Common Met. 54:263Google Scholar
  28. 28.
    Kihlborg L. (1963). Ark. Kemi 21:471Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of Technology KarnatakaMangaloreIndia
  2. 2.Department of Chemical EngineeringChungnam National UniversityDaejeonSouth Korea
  3. 3.Korea Institute of Energy Research (KIER)DaejeonSouth Korea

Personalised recommendations