Advertisement

Catalysis Letters

, Volume 116, Issue 1–2, pp 15–22 | Cite as

Adsorption and reaction of CO on CuO–CeO2 catalysts prepared by the combustion method

  • George Avgouropoulos
  • Theophilos Ioannides
Article

Abstract

Temperature-programmed techniques were employed to investigate the interaction of CO with CuO–CeO2 prepared by the urea-nitrates combustion method. These catalysts exhibited high and stable CO oxidation activity at relatively low reaction temperatures (< 150 °C). The CO adsorption capacity and catalytic activity of the catalysts was analogous to the concentration of easily-reduced copper oxide surface species. TPD and TPSR results can be explained by a dual scheme of CO adsorption: (i) on oxidized sites, which get reduced with simultaneous formation of surface CO2 and (ii) on reduced sites created by the former interaction. 10–20% of adsorbed CO desorbs molecularly in the absence of gas-phase O2, but reacts totally towards CO2 in the presence of gas-phase O2. Inhibition by CO2 observed under steady-state CO oxidation conditions is due to CO2 adsorption as found by CO2-TPD.

Keywords

CO oxidation ceria copper oxide combustion method TPD TPSR 

References

  1. 1.
    Trovarelli A. (1996) Catal. Rev.-Sci. Eng. 38:439CrossRefGoogle Scholar
  2. 2.
    Kaspar J., Fornasiero P., Graziani M. (1999) Catal. Today 50:285CrossRefGoogle Scholar
  3. 3.
    Liu W., Stephanopoulos M.F. (1995) J. Catal. 153:304CrossRefGoogle Scholar
  4. 4.
    Avgouropoulos G., Ioannides T. (2006) Appl. Catal. B: Environ. 67:1CrossRefGoogle Scholar
  5. 5.
    Luo M., Zhong Y., Yuan X., Zheng X. (1997) Appl. Catal. A: Gen. 162:121CrossRefGoogle Scholar
  6. 6.
    Xiaoyuan J., Guanglie L., Renxian Z., Jianxin M., Yu C., Xiaoming Z. (2001) Appl. Surf. Sci. 173:208CrossRefGoogle Scholar
  7. 7.
    Wang J., Tsai D., Huang T. (2002) J. Catal. 208:370CrossRefGoogle Scholar
  8. 8.
    Avgouropoulos G., Ioannides T. (2003) Appl. Catal. A: Gen. 244:155CrossRefGoogle Scholar
  9. 9.
    Hocevar S., Krasovec U.O., Orel B., Arico A.S., Kim H. (2000) Appl. Catal. B: Environ. 28:113CrossRefGoogle Scholar
  10. 10.
    Bera P., Aruna S.T., Patil K.C., Hegde M.S. (1999) J. Catal. 186:36CrossRefGoogle Scholar
  11. 11.
    Li Y., Fu Q., Flytzani-Stephanopoulos M. (2000) Appl. Catal. B: Environ. 27:179CrossRefGoogle Scholar
  12. 12.
    Papavasiliou J., Avgouropoulos G., Ioannides T. (2004) Catal. Commun. 5:231CrossRefGoogle Scholar
  13. 13.
    Tang X., Zhang B., Li Y., Xu Y., Xin Q., Shen W. (2005) Appl. Catal. A: Gen. 288:116CrossRefGoogle Scholar
  14. 14.
    Harrison P.G., Ball I.K., Azelee W., Daniell W., Goldfarb D. (2000) Chem. Mater 12:3715CrossRefGoogle Scholar
  15. 15.
    Martinez-Arias A., Fernandez-Garcia M., Galvez O., Coronado J.M., Anderson J.A., Conesa J.C., Soria J., Munuera G. (2000) J. Catal. 195:207CrossRefGoogle Scholar
  16. 16.
    Tang X., Zhang B., Li Y., Xu Y., Xin Q., Shen W. (2004) Catal. Today 93–95:191CrossRefGoogle Scholar
  17. 17.
    Marban G., Fuertes A.B. (2004) Appl. Catal. B: Environ. 57:43CrossRefGoogle Scholar
  18. 18.
    Martinez-Arias A., Hungria A.B., Fernandez-Garcia M., Conesa J.C., Munuera G. (2005) J. Power Sources 151:32CrossRefGoogle Scholar
  19. 19.
    Pintar A., Batista J., Hocevar S. (2005) J. Colloid Interf. Sci. 285:218CrossRefGoogle Scholar
  20. 20.
    Lamonier C., Ponchel A., D’Huysser A., Jalowiecki-Duhamel L. (1999) Catal. Today 50:247CrossRefGoogle Scholar
  21. 21.
    Bera P., Priolkar K.R., Sarode P.R., Hegde M.S., Emura S., Kumashiro R., Lalla N.P. (2002) Chem. Mater 14:3591CrossRefGoogle Scholar
  22. 22.
    Shan W., Shen W., Li C. (2003) Chem. Mater 15:4761CrossRefGoogle Scholar
  23. 23.
    Bae C.M., Ko J.B., Kim D.H. (2005) Catal. Commun 6:507CrossRefGoogle Scholar
  24. 24.
    Tschope A., Trudeau M., Ying J. (1999) J. Phys. Chem. B 103:8858CrossRefGoogle Scholar
  25. 25.
    Avgouropoulos G., Ioannides T., Matralis H. (2005) Appl. Catal. B: Environ. 56:87CrossRefGoogle Scholar
  26. 26.
    Zhang S., Huang W., Qiu X., Li B., Zheng X., Wu S. (2002) Catal. Lett. 80:41CrossRefGoogle Scholar
  27. 27.
    Wang J.B., Lin S., Huang T. (2002) Appl. Catal. A: Gen 232:107CrossRefGoogle Scholar
  28. 28.
    Gayen A., Baidya T., Prakash A.S., Ravishankar N., Hegde M.S. (2005) Ind. J. Chem. A 44:34Google Scholar
  29. 29.
    Lin R., Luo M., Zhong Y., Yan Z., Liu G., Liu W. (2003) Appl. Catal. A: Gen 255:331CrossRefGoogle Scholar
  30. 30.
    Bozon-Verduraz F., Bensalem A. (1994) J. Chem. Soc. Faraday Trans . 90:653CrossRefGoogle Scholar
  31. 31.
    Li C., Sakata Y., Arai T., Domen K., Maruya K., Onishi T. (1989) J. Chem. Soc. Faraday Trans. 85:929CrossRefGoogle Scholar
  32. 32.
    Hilaire S., Wang X., Luo T., Gorte R.J., Wagner J. (2001) Appl. Catal. A 215:271CrossRefGoogle Scholar
  33. 33.
    Park J., Jeong J., Yoon W., Kim C.S., Jung H., Lee H., Lee D., Park Y., Rhee Y. (2004) Appl. Catal. A: Gen 274:25CrossRefGoogle Scholar
  34. 34.
    Jung C.R., Han J., Nam S.W., Lim T., Hong S., Lee H. (2004) Catal. Today 93–95:183CrossRefGoogle Scholar
  35. 35.
    Marino F., Descorme C., Duprez D. (2005) Appl. Catal. B: Environ. 58:175CrossRefGoogle Scholar
  36. 36.
    Martinez-Arias A., Fernandez-Garcia M., Soria J., Conesa J.C. (1999) J. Catal. 182:367CrossRefGoogle Scholar
  37. 37.
    Sedmak G., Hocevar S., Levec J. (2004) J. Catal 222:87CrossRefGoogle Scholar
  38. 38.
    Avgouropoulos G., Ioannides T., Matralis H., Batista J., Hocevar S. (2001) Catal. Lett. 73:33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Foundation for Research and Technology-HellasInstitute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT)PatrasGreece

Personalised recommendations