Catalysis Letters

, Volume 116, Issue 3–4, pp 149–154 | Cite as

Coupled hydrogenation and ring opening of tetralin on potassium modified Pt/USY catalysts

  • Huaijun Ma
  • Xiaomei Yang
  • Guodong Wen
  • Ge Tian
  • Lei Wang
  • Yunpeng Xu
  • Bingchun Wang
  • Zhijian Tian
  • Liwu Lin

Coupled hydrogenation and ring opening of tetralin (THN) on Pt/USY catalyst were performed on a high-pressure fixed-bed reactor. The effect of reaction temperature in range of 100–300 °C and the nature of the catalyst (metal and acid sites) on the catalytic performance were studied. The results indicated that the extent of hydrocracking, a sequential reaction of ring opening, should be reduced in order to maintain high yields of the ring opening products (ROP). Introduction of the Pt component accelerated the hydrogenation and ring opening of the THN significantly. It was also found to be an effective way to optimize the acid properties of the catalysts by introducing an appropriate amount of potassium to the catalyst, such that the strong acid sites of the catalysts were diminished, and a higher ROP yield could be obtained as a result of the inhibiting of the hydrocracking activity of the catalyst. When the yield of the C10 fractions could be maintained at 90 wt.%, then a maximal ROP yield of 35.6 wt.% could be obtained on a 0.5 wt.% Pt/USY catalyst loaded with 2.0 wt.% of K.


tetralin decalin hydrogenation ring opening Pt/USY diesel 


  1. 1.
    Stanislaus A., Cooper B.H. (1994) . Catal. Rev. Sci. Eng. 36:75CrossRefGoogle Scholar
  2. 2.
    Cooper B.H., Donnis B.B.L. (1996) . Appl. Catal. A 137:203CrossRefGoogle Scholar
  3. 3.
    M. Sanati, B. Harrysson, M. Faghihi, B. Gevert and S. Järås, in: Catalysis, Vol. 16, eds. J.J. Spivey (The Royal Society of Chemistry, North Yorkshire, 2002) ch. 1Google Scholar
  4. 4.
    Corma A., Gonzalez-Alfaro V., Orchilles A.V. (2001) . J. Catal. 200:34CrossRefGoogle Scholar
  5. 5.
    McVicker G.B., Daage M., Touvelle M.S., Hudson C.W., Klein D.P., Baird W.C., Cook B.R., Chen J.G., Hantzer S., Vaughan D.E.W., Ellis E.S., Feeley O.C. (2002) . J. Catal. 210:137CrossRefGoogle Scholar
  6. 6.
    Arribas M.A., Martínez A. (2002) . Appl. Catal. A 230:203CrossRefGoogle Scholar
  7. 7.
    Santikunaporn M., Herrera J.E., Jongpatiwut S., Resasco D.E., Alvarez W.E., Sughrue E.L. (2004). J. Catal. 228:100CrossRefGoogle Scholar
  8. 8.
    Z. Paál, in: Encyclopaedia of Catalysis, Vol. 6, ed. I.T. Horvath (Wiley-Interscience, New Jersey, 2003)Google Scholar
  9. 9.
    W.C. Baird Jr., J.G. Chen and G.B. McVicker, US Patent 6,623,625 (2003)Google Scholar
  10. 10.
    W.C. Baird Jr., J.G. Chen and G.B. McVicker, US Patent 6,623,626 (2003)Google Scholar
  11. 11.
    W.C. Baird Jr., D.P. Klein, M.S. Touvelle, J.G. Chen and G.B. McVicker, US Patent 6,586,650 (2003)Google Scholar
  12. 12.
    W.C. Baird Jr., D.P. Klein, M.S. Touvelle and J.G. Chen, US Patent 6,589,416 (2003)Google Scholar
  13. 13.
    Du H.B., Fairbridge C., Yang H., Ring Z. (2005) . Appl. Catal. A 294:1CrossRefGoogle Scholar
  14. 14.
    Arribas M.A., Martínez A., Sastre G. (2002) . Stud. Surf. Sci. Catal. 142:1015Google Scholar
  15. 15.
    Corma A., Martínez A., Martínez-Soria V. (2001) . J. Catal. 200:259CrossRefGoogle Scholar
  16. 16.
    Arribas M.A., Corma A., Díaz-Cabañas M.J., Martínez A. (2004) . Appl. Catal. A 273:277CrossRefGoogle Scholar
  17. 17.
    Albonetti S., Baldi G., Barzanti A., Castellon E.R., Jiménez-López A., Quesada D.E., Vaccari A. (2006) . Catal. Lett. 108:197CrossRefGoogle Scholar
  18. 18.
    Kubicka D., Kumar N., Maki-Arvela P., Venalainen T., Tiitta M., Salmli T., Murzin D.Y. (2005) . Stud. Surf. Sci. Catal. 158:1669CrossRefGoogle Scholar
  19. 19.
    Yasuda H., Yoshimura Y. (1997) . Catal. Lett. 46:43CrossRefGoogle Scholar
  20. 20.
    Eliche-Quesada D., Mérida-Robles J.M., Rodríguez-Castellón E., Jiménez-López A. (2006) . Appl. Catal. B 65:118CrossRefGoogle Scholar
  21. 21.
    Albertazzi S., Ganzerla R., Gobbi C., Lenarda M., Mandreoli M., Salatelli E., Savini P., Storaro L., Vaccari A. (2003) . J. Mol. Catal. 200:261CrossRefGoogle Scholar
  22. 22.
    Santana R.C., Do P.T., Santikunaporn M., Alvarez W.E., Taylor J.D., Sughrue E.L., Resasco D.E. (2006) . Fuel 85:643CrossRefGoogle Scholar
  23. 23.
    Do P.T., Alvarez W.E., Resasco D.E. (2006). J. Catal. 238:477CrossRefGoogle Scholar
  24. 24.
    Mouli K.C., Sundaramurthy V., Dalai A.K., Ring Z. (2007). Appl. Catal. A 321:17CrossRefGoogle Scholar
  25. 25.
    Song C., Schmitz A.D. (1997). Energy Fuels 11:656CrossRefGoogle Scholar
  26. 26.
    Schmitz A.D., Bowers G., Song C. (1996). Catal. Today 31:45CrossRefGoogle Scholar
  27. 27.
    Song Y.Q., Zhu X.X., Xie S.J., Wang Q.X., Xu L.Y. (2004) . Catal. Lett. 97:31CrossRefGoogle Scholar
  28. 28.
    Yang X.M., Xu Z.S., Tian Z.J., Ma H.J., Xu Y.P., Qu W., Lin L.W. (2006). Catal. Lett. 109:139CrossRefGoogle Scholar
  29. 29.
    Emeis C.A. (1993). J. Catal. 141:347CrossRefGoogle Scholar
  30. 30.
    K. Sato, Y. Iwata, Y. Miki, H. Shimada (1999). J. Catal. 186:45CrossRefGoogle Scholar
  31. 31.
    Rodríguez-Castellón E., Mérida-Robles J., Díaz L., Maireles-Torres P., Jones D.J., Rozière J., Jiménez-López A. (2004). Appl. Catal. A 260:9CrossRefGoogle Scholar
  32. 32.
    Chareonpanich M., Zhang Z.G., Tomita A. (1996) . Energy Fuels 10:927CrossRefGoogle Scholar
  33. 33.
    Wang J., Li Q.Z., Yao J.D. (1999). Appl. Catal. A 184:181CrossRefGoogle Scholar
  34. 34.
    Yasuda H., Sato T., Yoshimura Y. (1999). Catal. Today 50:63CrossRefGoogle Scholar
  35. 35.
    Christoffel E.G., Paál Z. (1982). J. Catal. 73:30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Huaijun Ma
    • 1
    • 2
  • Xiaomei Yang
    • 1
    • 2
  • Guodong Wen
    • 1
    • 2
  • Ge Tian
    • 1
    • 2
  • Lei Wang
    • 1
    • 2
  • Yunpeng Xu
    • 1
  • Bingchun Wang
    • 1
    • 2
  • Zhijian Tian
    • 1
  • Liwu Lin
    • 1
    • 3
  1. 1.Laboratory of Applied Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP.R. China
  2. 2.Graduate School of Chinese Academy of SciencesChinese Academy of SciencesBeijingP.R. China
  3. 3.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP.R. China

Personalised recommendations