Catalysis Letters

, Volume 116, Issue 3–4, pp 136–142 | Cite as

Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation



Without use of any surfactant or oxidant, a series of Co3O4 catalysts have been prepared from cobalt nitrate aqueous solution via a very simple liquid-precipitation method with ammonium acid carbonate followed by calcination at various temperatures. The catalytic performance of the Co3O4 for CO oxidation has been studied with a continuous flowing laboratory microreactor system. The results show that the CO conversion of all the samples can reach 100% at ambient temperature. The catalyst calcined at 300 °C is able to maintain its activity for CO complete oxidation more than 500 min at 25 °C and about 240 min even at −78 °C. High reaction temperature results in a high catalytic stability, while the catalytic stability decreases with further increasing the reaction temperature. Characterizations with X-ray powder diffraction and transmission electron microscopy suggest that all the samples exist as a pure Co3O4 phase with the spinel structure, the samples are apt to aggregate and the specific surface area gradually decreases with increasing the calcination temperature, which directly leads to the decrease of catalytic stability. Furthermore, the amount of active oxygen species measured by CO titration experiments appears to be critical for catalytic performance.


Co3O4 liquid-precipitation low-temperature CO oxidation active oxygen species 



The authors thank the Shanxi Natural Science Foundation (grants: 20041017) and Shanxi Scientific & Technological Promoted Project of China (grants: 031099) for the financial support of this work.


  1. 1.
    Gardner S.D., Hoflund G.B., Upchurch B.T., Schryer D.R., Kielin E.J., Schryer J. (1991) J. Catal. 129:114CrossRefGoogle Scholar
  2. 2.
    Lamb A.B., Bray W.C., Frazer J.C.W. (1920) Ind. Eng. Chem. 12:213CrossRefGoogle Scholar
  3. 3.
    Yamaura H., Moriya K., Miura N., Yamazoe N. (2000) Sens. Actuators B 65:39CrossRefGoogle Scholar
  4. 4.
    Funazaki N., Asano Y., Yamashita S., Kobayashi T., Haruta M. (1993) Sens. Actuators B 13–14:536CrossRefGoogle Scholar
  5. 5.
    Tripathi A.K., Gupta N.M., Chatterji U.K., Iyer R.M. (1992) Indian J. Technol. 30:107Google Scholar
  6. 6.
    Thormählen P., Fridell E., Cruise N., Skoglundh M., Palmqvist A. (2001) Appl. Catal. B 31:1CrossRefGoogle Scholar
  7. 7.
    Shelef M., McCabe R.W. (2000) Catal. Today 62:35CrossRefGoogle Scholar
  8. 8.
    Kim D.H., Lim M.S. (2002) Appl. Catal. A 224:27CrossRefGoogle Scholar
  9. 9.
    Snytniko P.V., Sobyanin V.A., Belyaev V.D., Tsyrulniko P.G., Shitova N.B., Shlyapin D.A. (2003) Appl. Catal. A 239:149CrossRefGoogle Scholar
  10. 10.
    Dong G.L., Wang J.G., Gao Y.B., Chen S.Y. (1999) Catal. Lett. 58:37CrossRefGoogle Scholar
  11. 11.
    Bi Y.U., Lu G.X. (2003) Appl. Catal. B 41:279CrossRefGoogle Scholar
  12. 12.
    Bera P., Gayen A., Hegde M.S., Lalla N.P., Spadaro L., Frusteri F., Arena F. (2003) J. Phys. Chem. B 107:6122CrossRefGoogle Scholar
  13. 13.
    Margitfalvi J.L., Borbáth I., Hegedűs M., Tfirst E., Gőbölös S., Lázár K. (2000) J. Catal. 196:200CrossRefGoogle Scholar
  14. 14.
    Daniel M.C., Astruc D. Chem. Rev. 104 (2004) 341, and references cited thereinGoogle Scholar
  15. 15.
    Jia M.L., Shen Y.N., Li C.Y., Bao Z.R.G.T., Sheng S.S. (2005) Catal. Lett. 99:235CrossRefGoogle Scholar
  16. 16.
    Centeno M.Á., Portales C., Carrizosa I., Odriozola J.A. (2005) Catal. Lett. 102:289CrossRefGoogle Scholar
  17. 17.
    Jain A., Zhao X., Kjergaard S., Stagg-Williams S.M. (2005) Catal. Lett. 104:191CrossRefGoogle Scholar
  18. 18.
    Moreau F., Bond G.C. (2006) Catal. Today 114:362CrossRefGoogle Scholar
  19. 19.
    Moreau F., Bond G.C., Taylor A.O. (2004) Chem. Comm. 1642Google Scholar
  20. 20.
    Chiang C.W., Wang A.Q., Wan B.Z., Mou C.Y. (2005) J. Phys. Chem. B 109:18042CrossRefGoogle Scholar
  21. 21.
    Luo M.F., Zhong Y.J., Yuan X.X., Zheng X.M. (1997) Appl. Catal. A 162:121CrossRefGoogle Scholar
  22. 22.
    Hutchings G.J., Mirzaei A.A., Joyner R.W., Siddiqui M.R.H., Taylor S.H. (1998) Appl. Catal. A 166:143CrossRefGoogle Scholar
  23. 23.
    S.H. Taylor, G.J. Hutchings, A.A. Mirzaei (1999) Chem. Comm. 1373Google Scholar
  24. 24.
    Whittle D.M., Mirzaei A.A., Hargreaves J.S.J., Joyner R.W., Kiely C.J., Taylor S.H., Hutchings G.J. (2002) Phys. Chem. Chem. Phys. 4:5915CrossRefGoogle Scholar
  25. 25.
    Bae C.M., Ko J.B., Kim D.H. (2005) Catal. Comm. 6:507CrossRefGoogle Scholar
  26. 26.
    Yu Y., Yung F. (1974) J. Catal. 33:108CrossRefGoogle Scholar
  27. 27.
    Jia M.J., Zhang W.X., Tao Y.G., Wang G.Y., Cui X.H., Zhang C.L., Wu T.H. (1999) Chem. J. Chin. Univ. 20:637 (in Chinese)Google Scholar
  28. 28.
    Lin H.K., Chiu H.C., Tsai H.C., Chien S.H., Wang C.B. (2003) Catal. Lett. 88:169CrossRefGoogle Scholar
  29. 29.
    Lin H.K., Wang C.B., Chiu H.C., Chien S.H. (2003) Catal. Lett. 86:63CrossRefGoogle Scholar
  30. 30.
    Wang C.B., Tang C.W., Gau S.J., Chien S.H. (2005) Catal. Lett. 101:59CrossRefGoogle Scholar
  31. 31.
    Cunningham D.A.H., Kobayashi T., Kamijo N., Haruta M. (1994) Catal. Lett. 25:257CrossRefGoogle Scholar
  32. 32.
    Jansson J. (2000) J. Catal. 194:55CrossRefGoogle Scholar
  33. 33.
    Jansson J., Anders E.C.P., Fridell E., Skoglundh M., Österlund L., Thormählen P., Langer V. (2002) J. Catal. 211:387Google Scholar
  34. 34.
    Thormählen P., Skoglundh M., Fridell E., Andersson B.(1999) J. Catal. 188:300CrossRefGoogle Scholar
  35. 35.
    Zheng X.C., Wu S.H., Wang S.P., Wang S.R., Zhang S.M., Huang W.P. (2005) Appl. Catal. A 283:217CrossRefGoogle Scholar
  36. 36.
    Chen Y.Z., Liaw B.J., Huang C.W. (2006) Appl. Catal. A 302:168CrossRefGoogle Scholar
  37. 37.
    Krämer M., Schmidt T., Stöwe K., Maier W.F. (2006) Appl. Catal. A 302:257CrossRefGoogle Scholar
  38. 38.
    Drago R.S., Jurczyk K., Singh D.J., Young V. (1995) Appl. Catal. B 6:155CrossRefGoogle Scholar
  39. 39.
    Steen E.V., Schulz H. (1999) Appl. Catal. A 186:309CrossRefGoogle Scholar
  40. 40.
    Zhang Z.L., Geng H.R., Zheng L.S., Du B. (2005) J. Alloys. Compd. 392:317CrossRefGoogle Scholar
  41. 41.
    Schmidt-Szałowski K., Krawczyk K., Petryk J. (1998) Appl. Catal. A 175:147CrossRefGoogle Scholar
  42. 42.
    Langford J.I., Wilson A.J.C. (1978) J. Appl. Crystallogr. 11:102CrossRefGoogle Scholar
  43. 43.
    Gaddsden J.A. (1975) Infrared spectra of minerals and related inorganic compounds. Butterworth, London, p. 44Google Scholar
  44. 44.
    Spenser C., Schroeder D. (1974) Phys. Rev. B 9:3658CrossRefGoogle Scholar
  45. 45.
    Andrushkevich T., Boreskov G., Popovskii V., Pliasova L., Karakchiev L., Ostankovitch A. (1968) Kinet. Katal. 6:1244Google Scholar
  46. 46.
    Christoskova St.G., Stoyanova M., Georgieva M., Mehandjiev D. (1999) Mater. Chem. Phys. 60:39CrossRefGoogle Scholar
  47. 47.
    Singh R.N., Pandey J.P., Singh N.K., Lal B., Chartier P., Koenig J.F. (2000) Electrochim. Acta. 45:1911CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringInstitute of Advanced Chemistry, Shanxi UniversityTaiyuanChina

Personalised recommendations