Advertisement

Catalysis Letters

, Volume 116, Issue 1–2, pp 57–62 | Cite as

Nanoscale Cu supported catalysts in the partial oxidation of cyclohexane with molecular oxygen

  • Claudio Evangelisti
  • Giovanni Vitulli
  • Eleonora Schiavi
  • Maria Vitulli
  • Sergio Bertozzi
  • Piero Salvadori
  • Luca Bertinetti
  • Gianmario Martra
Article

Abstract

Cu supported catalysts (support: γ-Al2O3, Fe2O3, TiO2) have been conveniently prepared by deposition of Cu particles from acetone solvated Cu atoms. The catalysts have been characterized by HRTEM analysis, showing a quite homogeneous Cu particle size distribution. They are active systems for the partial oxidation of cyclohexane to cyclohexanol and cyclohexanone. After the catalytic experiment the Cu/γ-Al2O3 and Cu/TiO2 systems can be reused without valuable loss of activity, while the Cu/Fe2O3 system is quite inactive.

Keywords

Cu supported catalyst cyclohexane oxidation molecular oxygen Cu vapour derived nanoparticles 

References

  1. 1.
    Sheldon R.A., (1990) In: Centi G., Trifirò F. (eds) New Development in selective Oxidation. Elsevier, Amsterdam, pp. 551–32Google Scholar
  2. 2.
    Suresh K.A., Sharma M.M., Sridhar T. (2000) Ind. Eng. Chem. Res. 39: 3958CrossRefGoogle Scholar
  3. 3.
    Schuchardt U., Cardoso D., Sercheli R., Pereira R., da Cruz R.S., Guerreiro M.C., Mandelli D., Spinace E.V., Pires E.L. (2001) Appl. Catal. A: General 211:1 and references therein.CrossRefGoogle Scholar
  4. 4.
    Barton D.H.R., Bévière S.D., Hill D.R., (1994) Tetrahedron 50: 2665CrossRefGoogle Scholar
  5. 5.
    Schuchardt U., Pereira R., Rufo M., (1998) J. Mol. Cat. A: Chem. 135: 257CrossRefGoogle Scholar
  6. 6.
    Komiya N., Naota T., Oda Y., Murahashi S.-I. (1997) J. Mol. Cat. A: Chem. 117: 21CrossRefGoogle Scholar
  7. 7.
    Guo G.-C., Chu M.-F., Liu Q., Guo D.-C., Liu X.-Q. (2003) Appl. Catal. A: Gen. 246: 139CrossRefGoogle Scholar
  8. 8.
    S.-I. Murahashi, N. Komiya and Y. Hayashi, Eur. Pat. Appl. (2002) EP 1174410.Google Scholar
  9. 9.
    Steeman J.W.M., Kaarsemaker S., Hoftyzer P.J. (1961) Chem. Eng. Sci. 14: 139CrossRefGoogle Scholar
  10. 10.
    K. Weissermel, H.-J. Arpe in: Industrial Organic Chemistry, 2nd ed, (VCH Press, Weinheim,1993)Google Scholar
  11. 11.
    Shilov A.E., Shol’pin G.B. (1997) Chem. Rev. 97: 2879CrossRefGoogle Scholar
  12. 12.
    Sheldon R.A., Arends I.W.C.E., Lempers H.E.B. (1998) Catal. Today 41: 387CrossRefGoogle Scholar
  13. 13.
    Sheldon R.A., Wallau M., Arends I.W.C.E., Schuchardt U. (1998) Acc. Chem. Res. 31: 485CrossRefGoogle Scholar
  14. 14.
    J.M. Thomas and R. Raja, Chem. Comm. (2001) 675.Google Scholar
  15. 15.
    Sankar G., Raja R., Thomas J.M. (1998) Catal. Lett. 55: 15CrossRefGoogle Scholar
  16. 16.
    Luna F.J., Ukawa S.E., Wallau M., Schuchardt U. (1997) J. Mol. Catal. A:Chem. 117: 405CrossRefGoogle Scholar
  17. 17.
    Thomas J.M., Raja R., Sankar G., Bell R.G. (2000) Stud. Surf. Sci. Catal. 130: 887CrossRefGoogle Scholar
  18. 18.
    Dugal M., Sankar G., Raja R., Thomas J.M. (2000) Angew. Chem. Int. Ed. Engl. 39: 2310CrossRefGoogle Scholar
  19. 19.
    Vanoppen D.L., Jacobs P.A. (1999) Catal. Today 49: 177CrossRefGoogle Scholar
  20. 20.
    Haanepen M.J., Elemans-Mehring A.M., van Hooff J.H.C. (1997) Appl. Catal. A: Gen. 152: 203CrossRefGoogle Scholar
  21. 21.
    Parton R.F., Peere G.J., Neys P.E., Jacobs P.A., Claesseus R., Baron G.R. (1996) J. Mol. Cat. 113: 445CrossRefGoogle Scholar
  22. 22.
    Knops-Gerrits P.P., Abbe M.L., Leung W.H., Van Bavel A.M., Langouche G., Bruynseraede I., Jacobs P.A. (1996) Stud. Surf. Sci. Catal. 191: 811CrossRefGoogle Scholar
  23. 23.
    Parton R.F., Vankelcom I.F.J., Casselman M.J.A., Bezouhanova C.P., Utterhoeven J.B., Jacobs P.B. (1994) Nature 570: 541CrossRefGoogle Scholar
  24. 24.
    Balkus Jr K.J., Eissa M., Levado R. (1995) J. Am Chem. Soc. 117: 10753CrossRefGoogle Scholar
  25. 25.
    Ponce A.A., Klabunde K.J. (2005) J. Mol. Catal. A: Chem. 225: 1CrossRefGoogle Scholar
  26. 26.
    Vitulli G., Bernini M., Bertozzi S., Pitzalis E., Salvadori P., Coluccia S., Martra G. (2002) Chem. Mater. 14: 1183CrossRefGoogle Scholar
  27. 27.
    Klabunde K.J., Li Y.X., Tan B.J. (1991) Chem. Materials 3: 30CrossRefGoogle Scholar
  28. 28.
    Parshall G.W., Ittel S.D. (1992). Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes 2nd ed. Wiley-Interscience, New YorkGoogle Scholar
  29. 29.
    Zhang S.-M., Huang W.-P., Qiu X.-H., Li B.-Q., Zheng X.-C., Wu S.-H. (2002) Catal. Letters 80(1–2): 41CrossRefGoogle Scholar
  30. 30.
    See as examples: C.N.R. Rao, G.U. Kulkarni, P.J. Jonn and P.P Edwards, Chem. Eur. J. 8 (2002) 28; A.P. Weber, M. Seipenbusch and G. Kasper, J. Nanoparticle Res. 5 (2003) 293; C. Fan, T. Wu, W.E Kaden and S.L. Anderson, Surface Sci. 600(2) (2006) 461.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Claudio Evangelisti
    • 1
  • Giovanni Vitulli
    • 2
  • Eleonora Schiavi
    • 1
  • Maria Vitulli
    • 1
    • 3
  • Sergio Bertozzi
    • 2
  • Piero Salvadori
    • 1
  • Luca Bertinetti
    • 4
  • Gianmario Martra
    • 4
  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly
  2. 2.Istituto per la Chimica dei Composti OrganoMetallici (ICCOM) – CNRPisaItaly
  3. 3.Drogheria e Alimentari S.r.lFirenzeItaly
  4. 4.Dipartimento di Chimica IFM and Nanostructured Interfaces and surfaces (NIS)Universita’ di TorinoTorinoItaly

Personalised recommendations