Catalysis Letters

, Volume 115, Issue 1–2, pp 23–26 | Cite as

In-situ regeneration mechanisms of hybrid catalysts in the one-step synthesis of dimethyl ether from syngas

  • Youshun Luan
  • Hengyong Xu
  • Chunying Yu
  • Wenzhao Li
  • Shoufu Hou


One-step synthesis of dimethyl ether (DME) from H2/CO has been studied in a fixed bed reactor over hybrid catalyst CuOZnOAl2O3/γ-Al2O3-HZSM-5. The physicochemical properties of fresh and used catalysts were also studied by means of H2-TPR, XRD and N2O chemisorptions. The results showed that for deactivated catalysts by sintering, redox cycle was an effective method for in-situ regeneration. There were two different regeneration mechanisms according to various atmospheres: (i) For O2-syngas cycle, sintered Cu particles were re-dispersed and initial activity was restored mostly. The process was reversible, which was called reversible regeneration; (ii) for N2O (CO2)-syngas cycle, Cu particles could not be re-dispersed and catalytic activity was restored a little due to the regulation of surface state. On the other hand, this process could depress the deactivation velocity and was irreversible, which was called irreversible regeneration.


dimethyl ether sintering deactivation regeneration reversible regeneration irreversible regeneration 


  1. 1.
    Omata K., Watanabe Y., Umegaki T., Ishiguro G., Yamada M. (2002) . Fuel 81:1605CrossRefGoogle Scholar
  2. 2.
    Moradi G.R., Nosrati S., Yaripor F. (2007) . Catal. Commun. 8 : 598CrossRefGoogle Scholar
  3. 3.
    Fei J.H., Tang X.J., Hou Z.Y., Lou H., Zheng X.M. (2006) . Catal. Commun. 7 : 827CrossRefGoogle Scholar
  4. 4.
    Sun K.P., Lu W.W., Wang M., Xu X.L. (2004) . Catal. Commun. 5 : 367CrossRefGoogle Scholar
  5. 5.
    Kim J.H., Park M.J., Kim S.J., Joo O.S., Jung K.D. (2004) . Appl. Catal. A 264 :37CrossRefGoogle Scholar
  6. 6.
    Qi G.X., Fei J.H., Zheng X.M., Hou Z.Y. (2001) . Catal. Lett. 72(1–2) : 121CrossRefGoogle Scholar
  7. 7.
    J. Erena, R. Garona, J.M. Arandes, A.T. Aguayo and J. Bilbao, Catal. Today 107–108 (2005) 467.Google Scholar
  8. 8.
    Aguayo A.T., Erena J., Sierra I., Olazar M., Bilbao J. (2005) . Catal. Today 106 :265CrossRefGoogle Scholar
  9. 9.
    Jia M.L., Xu H.Y., Li W.Z., Hou S.F., Ge Q.J., Kong F.H., Xu X.M. (2004) . J. Mol. Catal. (China) 5 :351Google Scholar
  10. 10.
    Lee S., Sardesai A. (2005) . Top. Catal. 32 : 197CrossRefGoogle Scholar
  11. 11.
    S. Lee, A. Sawant and C. Kulik U.S. Patent, No.5,004,717, 1991.April.Google Scholar
  12. 12.
    Fierro G., Jacono M.L., Inversi M., Porta P., Cioci F., Lavecchia R. (1996) . Appl. Catal. A. 137 :327CrossRefGoogle Scholar
  13. 13.
    Andreasen J.W., Rasmussen F.B., Helveg S., Molenbroek A., Stahl K., Nielsen M.M., Feidenhans R.J. (2006) . Appl. Cryst. 39:209CrossRefGoogle Scholar
  14. 14.
    Jia M.L., Li W.Z., Xu H.Y., Hou S.F., Yu C.Y., Ge Q.J. (2002) . Catal. Lett. 1-2:31CrossRefGoogle Scholar
  15. 15.
    Sun J.T., Metcalfe I.S., Sahibzada M. (1999) . Ind. Eng. Chem. Res. 38 :3868CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Youshun Luan
    • 1
  • Hengyong Xu
    • 1
  • Chunying Yu
    • 1
  • Wenzhao Li
    • 1
  • Shoufu Hou
    • 1
  1. 1.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations