Catalysis Letters

, Volume 114, Issue 3–4, pp 198–201 | Cite as

Deactivation of CeO2 catalyst in the hydrogenation of benzoic acid to benzaldehyde

  • Mingben Chong
  • Dang-guo Cheng
  • Lu Liu
  • Fengqiu Chen
  • Xiaoli Zhan


The CeO2 catalyst has been investigated for hydrogenation of benzoic acid to benzaldehyde and shows little deactivation in stability test. BET results indicate that no significant sinter was observed on the used catalyst. SEM images show few changes taking place in surface feature of the used catalyst. Element analysis confirms that some coke is formed which leads to catalyst deactivation. XRD analysis reveals that crystalline size of catalyst is not relevant to the catalytic behavior in the range from 14.3 nm to 18.4 nm.


hydrogenation benzaldehyde benzoic acid CeO2 deactivation 



This work was supported by a grand for Scientific Research from Science and Technology Department of Zhejiang Province and JIAHUA Chemicals Co., China, which is greatly appreciated.


  1. 1.
    Ponzi M., Duschatzky C., Carrascull A. and Ponzi E. (1998) Appl. Catal. A 169:373CrossRefGoogle Scholar
  2. 2.
    Guo C.C., Liu Q., Wang X.T. and Hu H.Y. (2005) Appl. Catal. A 282:55CrossRefGoogle Scholar
  3. 3.
    Zhao W.J., Jiang X.Z. and Zhuo G.L. (2005) J. Mol. Catal. A 225:131CrossRefGoogle Scholar
  4. 4.
    Lin X.R., Xu J.Y., Liu H.Z., Yue B., Jin S.L. and Xie G.Y. (2000) J. Mol. Catal. A 161:163CrossRefGoogle Scholar
  5. 5.
    Keresszegi C., Ferri D., Mallat T. and Baiker A. (2005) J. Phys. Chem. B 109:958CrossRefGoogle Scholar
  6. 6.
    Chen A.M., Xu H.L., Yue Y.H., Hua W.M., Shen W. and Gao Z. (2004) Appl. Catal. A 274:101CrossRefGoogle Scholar
  7. 7.
    Yokoyama T., Setoyama T., Fujita N., Nakjima M. and Maki T. (1992) Appl. Catal. 88:149CrossRefGoogle Scholar
  8. 8.
    Hölderich W.F. and Tjoe J. (1999) Appl. Catal. A 184:257CrossRefGoogle Scholar
  9. 9.
    Yokoyama T. and Yamagata N. (2001) Appl. Catal. A 221:227CrossRefGoogle Scholar
  10. 10.
    de Lange M.W., van Ommen J.G. and Lefferts L. (2001) Appl. Catal. A 220:41CrossRefGoogle Scholar
  11. 11.
    de Lange M.W., van Ommen J.G. and Lefferts L. (2002) Appl. Catal. A 231:17CrossRefGoogle Scholar
  12. 12.
    Dury F., Misplon V. and Gaigneaux E.M. (2004) Catal. Today 91–92:111CrossRefGoogle Scholar
  13. 13.
    Dury F., Clément D. and Gaigneaux E.M. (2006) Catal. Today 112:130CrossRefGoogle Scholar
  14. 14.
    Sakata Y. and Ponec V. (1998) Appl. Catal. A 166:173CrossRefGoogle Scholar
  15. 15.
    Doornkamp C. and Ponec V. (2000) J. Mol. Catal. A 162:19CrossRefGoogle Scholar
  16. 16.
    Igarashi A., Ichikawa N., Sato S., Takahashi R. and Sodesawa T. (2006) Appl. Catal. A 300:50CrossRefGoogle Scholar
  17. 17.
    Tong J.H., Yang W.S. (2003) Membr. Sci. Tech. (Chinese) 23:33Google Scholar
  18. 18.
    Velu S., Kapoor M.P., Inagaki S., Suzuki K.(2003) Appl. Catal. A 245:317Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mingben Chong
    • 1
  • Dang-guo Cheng
    • 1
  • Lu Liu
    • 1
  • Fengqiu Chen
    • 1
  • Xiaoli Zhan
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations