Skip to main content
Log in

Gold supported on well-ordered ceria films: nucleation, growth and morphology in CO oxidation reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Structure of gold nanoparticles formed by physical vapor deposition onto thin ceria films was studied by scanning tunneling microscopy (STM). Gold preferentially nucleates on point defects present on the terraces of the well-ordered, fully oxidized films to a low density. The nucleation expands to the terrace step edges, providing a large variety of low-coordinated sites. Only at high coverage, the Au particles grow homogeneously on the oxygen-terminated CeO2(111) terraces. The morphology of Au particles was further examined by STM in situ and ex situ at elevated (up to 20 mbar) pressures of O2, CO, and CO + O2 at 300 K. The particles are found to be stable in O2 ambient up to 10 mbar, meanwhile gold sintering emerges at CO pressures above ∼1 mbar. Sintering of the Au particles, which mainly proceeds along the step edges of the CeO2(111) support, is observed in CO + O2 (1:1) mixture at much lower pressure (∼10−3 mbar), thus indicating that the structural stability of the Au/ceria catalysts is intimately connected with its reactivity in the CO oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. G. Bond, C. Lois and D. Thompson, Catalysis by Gold (World Scientific, 2006)

  2. Fu Q., Weber A., Flytzani-Stephanopoulos M. (2001) Catal. Lett. 77:87

    Article  CAS  Google Scholar 

  3. Andreeva D., Idakiev V., Tabakova T., Ilieva L., Falares P., Bourlinos A., Travlos A. (2002) Catal. Today 72:51

    Article  CAS  Google Scholar 

  4. Sakurai H., Akita T., Tsubota S., Kiuchi M., Haruta M. (2005) Appl. Catal. A 291:179

    Article  CAS  Google Scholar 

  5. Carrettin S., Concepción P., Corma A., López Nieto J.M., Puntes V.F. (2004) Angew. Chem. Int. Ed. 43:2538

    Article  CAS  Google Scholar 

  6. Guzman J., Carrettin S., Corma A. (2005) J. Am. Chem. Soc. 127:3286

    Article  CAS  Google Scholar 

  7. Lai S.-Y., Qiu Y., Wang S. (2006) J. Catal. 237:303

    Article  CAS  Google Scholar 

  8. Centeno M.A., Portales C., Carrizosa I., Odrizola J.A. (2005) Catal. Lett. 102:289

    Article  CAS  Google Scholar 

  9. Pillai U.R., Deevi S. (2006) Appl. Catal. A 299:266

    Article  CAS  Google Scholar 

  10. Fu Q., Saltsburg H., Flytzani-Stephanopoulos M. (2003) Science 301:935

    Article  CAS  Google Scholar 

  11. Campbell C.T. (1997) Surf. Sci. Rep. 27:1

    Article  CAS  Google Scholar 

  12. Henry C. (1998) Surf. Sci. Rep. 31:231

    Article  CAS  Google Scholar 

  13. Goodman D.W. (1995) Chem. Rev. 95:523

    Article  CAS  Google Scholar 

  14. Freund H.-J. (2002) Surf. Sci. 500:271

    Article  CAS  Google Scholar 

  15. Meyer R., Lemire C., Shaikhutdinov S., Freund H.-J. (2004) Gold Bull. 37:72

    CAS  Google Scholar 

  16. J. Guzman and B.C. Gates, J. Am. Chem. Soc. 126 (2004) 2672; J. Phys. Chem. B 106 (2002) 7659

  17. Henao J.D., Caputo T., Yang J.H., Kung M.C., Kung H.H. (2006) J. Phys. Chem. B 110:8689

    Article  CAS  Google Scholar 

  18. Wang X., Rodriguez J.A., Hanson J.C., Perez M., Evans J. (2005) J. Chem. Phys. 1213:21101

    Google Scholar 

  19. Overbury S.H., Schwartz V., Mullins D., Yan W., Dai S. (2006) J. Catal. 241:56

    Article  CAS  Google Scholar 

  20. Weiher N., et al. (2006) J. Catal. 240:100

    Article  CAS  Google Scholar 

  21. Hutchings G., et al. (2006) J. Catal. 242:71

    Article  CAS  Google Scholar 

  22. Valden M., Lai X., Goodman D.W. (1998) Science 281:1647

    Article  CAS  Google Scholar 

  23. Kolmakov A., Goodman D.W. (2000) Catal. Lett. 70:93

    Article  CAS  Google Scholar 

  24. Starr D.E., Shaikhutdinov S.K., Freund H.-J. (2005) Top. Catal. 36:33

    Article  CAS  Google Scholar 

  25. Mullins D.R., Radulovic P.V., Overbury S.H. (1999) Surf. Sci. 429:186

    Article  CAS  Google Scholar 

  26. J.-L. Lu, H.-J.Gao, S. Shaikhutdinov and H.-J. Freund, Surf. Sci. (corrected proof available online)

  27. Nörenberg H., Briggs G.A.D. (1999) Surf. Sci. 424:L352

    Article  Google Scholar 

  28. Eck S., Castellarin-Cudia C., Surnev S., Ramsey M.G., Netzer F.P. (2002) Surf. Sci. 520:173

    Article  CAS  Google Scholar 

  29. Castellarin-Cudia C., Surnev S., Schneider G., Podlucky R., Ramsey M.G., Netzer F.P. (2004) Surf. Sci. 554:L120

    Article  CAS  Google Scholar 

  30. Esch F., Fabris S., Zhou L., Montini T., Africh C., Fornasiero P., Comelli G., Rosei R. (2005) Science 309:752

    Article  CAS  Google Scholar 

  31. T. Akita, M. Okumura, K. Tanaka, M. Kohyama, S. Tsubota and M. Haruta, J. Electron Microsc. 54 (2005) 81; J. Mat. Sci. 40 (2005) 3101

    Google Scholar 

  32. Sayle T.X.T., Parker S.C., Catlow C.R.A. (1994) Surf. Sci. 316:329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Fonds der Chemischen Industrie and Deutsche Forschungsgemeinschaft (DFG). J.L. thanks International Max-Planck Research School “Complex Surfaces in Materials Science” for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shaikhutdinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, JL., Gao, HJ., Shaikhutdinov, S. et al. Gold supported on well-ordered ceria films: nucleation, growth and morphology in CO oxidation reaction. Catal Lett 114, 8–16 (2007). https://doi.org/10.1007/s10562-007-9039-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9039-3

Keywords

Navigation