Catalysis Letters

, Volume 114, Issue 1–2, pp 8–16 | Cite as

Gold supported on well-ordered ceria films: nucleation, growth and morphology in CO oxidation reaction

  • J.-L. Lu
  • H.-J. Gao
  • S. Shaikhutdinov
  • H.-J. Freund


Structure of gold nanoparticles formed by physical vapor deposition onto thin ceria films was studied by scanning tunneling microscopy (STM). Gold preferentially nucleates on point defects present on the terraces of the well-ordered, fully oxidized films to a low density. The nucleation expands to the terrace step edges, providing a large variety of low-coordinated sites. Only at high coverage, the Au particles grow homogeneously on the oxygen-terminated CeO2(111) terraces. The morphology of Au particles was further examined by STM in situ and ex situ at elevated (up to 20 mbar) pressures of O2, CO, and CO + O2 at 300 K. The particles are found to be stable in O2 ambient up to 10 mbar, meanwhile gold sintering emerges at CO pressures above ∼1 mbar. Sintering of the Au particles, which mainly proceeds along the step edges of the CeO2(111) support, is observed in CO + O2 (1:1) mixture at much lower pressure (∼10−3 mbar), thus indicating that the structural stability of the Au/ceria catalysts is intimately connected with its reactivity in the CO oxidation reaction.


gold ceria CO oxidation thin films scanning tunneling microscopy 



The authors gratefully acknowledge financial support from the Fonds der Chemischen Industrie and Deutsche Forschungsgemeinschaft (DFG). J.L. thanks International Max-Planck Research School “Complex Surfaces in Materials Science” for the fellowship.


  1. 1.
    G. Bond, C. Lois and D. Thompson, Catalysis by Gold (World Scientific, 2006)Google Scholar
  2. 2.
    Fu Q., Weber A., Flytzani-Stephanopoulos M. (2001) Catal. Lett. 77:87CrossRefGoogle Scholar
  3. 3.
    Andreeva D., Idakiev V., Tabakova T., Ilieva L., Falares P., Bourlinos A., Travlos A. (2002) Catal. Today 72:51CrossRefGoogle Scholar
  4. 4.
    Sakurai H., Akita T., Tsubota S., Kiuchi M., Haruta M. (2005) Appl. Catal. A 291:179CrossRefGoogle Scholar
  5. 5.
    Carrettin S., Concepción P., Corma A., López Nieto J.M., Puntes V.F. (2004) Angew. Chem. Int. Ed. 43:2538CrossRefGoogle Scholar
  6. 6.
    Guzman J., Carrettin S., Corma A. (2005) J. Am. Chem. Soc. 127:3286CrossRefGoogle Scholar
  7. 7.
    Lai S.-Y., Qiu Y., Wang S. (2006) J. Catal. 237:303CrossRefGoogle Scholar
  8. 8.
    Centeno M.A., Portales C., Carrizosa I., Odrizola J.A. (2005) Catal. Lett. 102:289CrossRefGoogle Scholar
  9. 9.
    Pillai U.R., Deevi S. (2006) Appl. Catal. A 299:266CrossRefGoogle Scholar
  10. 10.
    Fu Q., Saltsburg H., Flytzani-Stephanopoulos M. (2003) Science 301:935CrossRefGoogle Scholar
  11. 11.
    Campbell C.T. (1997) Surf. Sci. Rep. 27:1CrossRefGoogle Scholar
  12. 12.
    Henry C. (1998) Surf. Sci. Rep. 31:231CrossRefGoogle Scholar
  13. 13.
    Goodman D.W. (1995) Chem. Rev. 95:523CrossRefGoogle Scholar
  14. 14.
    Freund H.-J. (2002) Surf. Sci. 500:271CrossRefGoogle Scholar
  15. 15.
    Meyer R., Lemire C., Shaikhutdinov S., Freund H.-J. (2004) Gold Bull. 37:72Google Scholar
  16. 16.
    J. Guzman and B.C. Gates, J. Am. Chem. Soc. 126 (2004) 2672; J. Phys. Chem. B 106 (2002) 7659Google Scholar
  17. 17.
    Henao J.D., Caputo T., Yang J.H., Kung M.C., Kung H.H. (2006) J. Phys. Chem. B 110:8689CrossRefGoogle Scholar
  18. 18.
    Wang X., Rodriguez J.A., Hanson J.C., Perez M., Evans J. (2005) J. Chem. Phys. 1213:21101Google Scholar
  19. 19.
    Overbury S.H., Schwartz V., Mullins D., Yan W., Dai S. (2006) J. Catal. 241:56CrossRefGoogle Scholar
  20. 20.
    Weiher N., et al. (2006) J. Catal. 240:100CrossRefGoogle Scholar
  21. 21.
    Hutchings G., et al. (2006) J. Catal. 242:71CrossRefGoogle Scholar
  22. 22.
    Valden M., Lai X., Goodman D.W. (1998) Science 281:1647CrossRefGoogle Scholar
  23. 23.
    Kolmakov A., Goodman D.W. (2000) Catal. Lett. 70:93CrossRefGoogle Scholar
  24. 24.
    Starr D.E., Shaikhutdinov S.K., Freund H.-J. (2005) Top. Catal. 36:33CrossRefGoogle Scholar
  25. 25.
    Mullins D.R., Radulovic P.V., Overbury S.H. (1999) Surf. Sci. 429:186CrossRefGoogle Scholar
  26. 26.
    J.-L. Lu, H.-J.Gao, S. Shaikhutdinov and H.-J. Freund, Surf. Sci. (corrected proof available online)Google Scholar
  27. 27.
    Nörenberg H., Briggs G.A.D. (1999) Surf. Sci. 424:L352CrossRefGoogle Scholar
  28. 28.
    Eck S., Castellarin-Cudia C., Surnev S., Ramsey M.G., Netzer F.P. (2002) Surf. Sci. 520:173CrossRefGoogle Scholar
  29. 29.
    Castellarin-Cudia C., Surnev S., Schneider G., Podlucky R., Ramsey M.G., Netzer F.P. (2004) Surf. Sci. 554:L120CrossRefGoogle Scholar
  30. 30.
    Esch F., Fabris S., Zhou L., Montini T., Africh C., Fornasiero P., Comelli G., Rosei R. (2005) Science 309:752CrossRefGoogle Scholar
  31. 31.
    T. Akita, M. Okumura, K. Tanaka, M. Kohyama, S. Tsubota and M. Haruta, J. Electron Microsc. 54 (2005) 81; J. Mat. Sci. 40 (2005) 3101Google Scholar
  32. 32.
    Sayle T.X.T., Parker S.C., Catlow C.R.A. (1994) Surf. Sci. 316:329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J.-L. Lu
    • 1
    • 2
  • H.-J. Gao
    • 2
  • S. Shaikhutdinov
    • 1
  • H.-J. Freund
    • 1
  1. 1.Department of Chemical PhysicsFritz Haber Institute of the Max Planck SocietyBerlinGermany
  2. 2.Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations