Catalysis Letters

, Volume 112, Issue 3–4, pp 181–186 | Cite as

Sol-gel Ag + Pd/SiO2 as a catalyst for reduction of NO with CO

  • Lachezar Radev
  • Mariana Khristova
  • Dimitar Mehandjiev
  • Biserka Samuneva

Mono – (Ag/SiO2, Pd/SiO2) and bimetallic (Ag+Pd/SiO2) catalysts have been obtained via sol-gel method from tetra-ethoxy-silane (TEOS) and their activity in reduction of Nitric oxide (NO) with carbon monoxide (CO) has been investigated. The highest activity in the process of reduction of NO with CO possesses the sample Ag + Pd/SiO2. It has been found that the sol-gel method for preparation of bimetallic catalysts allows the formation of various catalytic active centers (CAC) which leads to high activity in reaction of NO reduction. The presence of Ag2O and PdO in these CAC allows the elimination of NO. The process of this elimination includes reduction of NO with CO at temperatures up to 200 оC as well as direct decomposition of NO at higher temperatures.


sol-gel method catalysts NO reduction with CO catalytic active complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Farrauto, R.J., Heck, R.M. 1999Catal. Today51351CrossRefGoogle Scholar
  2. [2]
    Park, P.W., Ragle, C.S., Bayer, C.L., Balmer, M.L. 2002J. Catal.97210Google Scholar
  3. [3]
    Burch, R., Breen, J.P., Meunier, F.C. 2002Appl. Catal. B11220Google Scholar
  4. [4]
    Iwamoto, M., Yokoo, S., Sakai, K., Kawaga, S. 1981J. Chem. Soc., Faraday Trans771629CrossRefGoogle Scholar
  5. [5]
    Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S. 1986J. Chem. Soc. Chem. Commun.161272CrossRefGoogle Scholar
  6. [6]
    Iwamoto, M., Yahiro, H., Mine, Y., Kagawa, S. 1989Chem. Lett.2213CrossRefGoogle Scholar
  7. [7]
    Iwamoto, M., Yahiro, H., Tanda, K., Mizuno, N., Mine, Y., Kagawa, S. 1991J. Phys. Chem.953727CrossRefGoogle Scholar
  8. [8]
    Iwamoto, M., Yahiro, H., Mizumo, N., Zhang, W., Mine, Y., Furukawa,  H., Kagawa, S. 1992J. Phys. Chem.969360CrossRefGoogle Scholar
  9. [9]
    Sato, S., Yu-u, Y., Yahiro, H., Mizuno, N., Iwamoto, M. 1991Appl. Catal. L170Google Scholar
  10. [10]
    Obuchi, A., Ohi, A., Nakamura, M., Ogata, A., Mizuno, K., Ohuchi, H. 1993Appl. Catal. B271CrossRefGoogle Scholar
  11. [11]
    Prevot, G., Meerson, O., Piccolo, L., Henry, C.R. 2002J. Phys.: Condens. Matter144251CrossRefGoogle Scholar
  12. [12]
    Thirunavukkarasu, K., Thirumoorthy, K., Libuda, J., Gopinath, C.S. 2005J. Phys. Chem. B10913272CrossRefGoogle Scholar
  13. [13]
    Bekyarova, E., Khristova, M., Mehandjiev, D. 1999J. Coll. Int. Sci.213400CrossRefGoogle Scholar
  14. [14]
    Khristova, M., Mehandjiev, D. 1998Carbon361379CrossRefGoogle Scholar
  15. [15]
    Nickolov, R., Stankova, N., Khristova, M., Mehandjiev, D. 2003J. Coll. Int. Sci.265 121CrossRefGoogle Scholar
  16. [16]
    Spasova, I, Khristova, M, Panayotov, D., Mehandjiev, D. 1999J. Catal18543CrossRefGoogle Scholar
  17. [17]
    Toshima, N., Yonezawa, T. 1998New J. Chem111179CrossRefGoogle Scholar
  18. [18]
    Samuneva, B., Dimitriev, Y., Dimitrov, V., Kashchieva, E., Encheva, G. 1998J. Sol-Gel Sci. Techn.13969CrossRefGoogle Scholar
  19. [19]
    Encheva, G., Samuneva, B., Djambaski, P., Kashchieva, E., Paneva, D., Mitov, I. 2004J. Non-Cryst. Solids345&346615CrossRefGoogle Scholar
  20. [20]
    Toshima, N. 2000Pure Appl. Chem.72317Google Scholar
  21. [21]
    Venezia, A.M., Liotta, L.F., Daganello, G., Schay, Z., Guczi, L. 1997J. Catal.182449CrossRefGoogle Scholar
  22. [22]
    Vasan, N.H., Rao, C.N.R. 1995J. Matar. Chem.51755CrossRefGoogle Scholar
  23. [23]
    D’Souza, L., Bera, P., Sampath, S. 2002J. Coll. Int. Sci.24692CrossRefGoogle Scholar
  24. [24]
    Boos, A., Pourroy, G., Rehspinger, J.L., Guille, J.L. 1994J. Non-Cryst. Solids176172CrossRefGoogle Scholar
  25. [25]
    H. Kosuka and S. Sakka, in: Advanced in Chemistry Series, Vol. 234, ed. H.E. Bergna (American Chemical Society, Washington D.C., 1994) p. 129Google Scholar
  26. [26]
    Panayotov, D., Khristova, M., Mehandjiev, D. 1987Appl. Catal.3448Google Scholar
  27. [27]
    Wu, P.-W., Dunn, B., Doan, V., Schwartz, B.J., Yablonovitch, L., Yamane, M. 2000J. Sol-Gel Sci. Tech.19249CrossRefGoogle Scholar
  28. [28]
    Venezia, A.M., Liotta, L.F., Pantaleo, G., Parola, V., Daganello, G., Beck, A., Koppany, Zs., Frey, K., Horvath, D., Guczi, L. 2003Appl. Catal. A251359CrossRefGoogle Scholar
  29. [29]
    Liotta, L.F., Venezia, A.M., Deganello, G., Longo, A., Martorana, A., Schay, Z., Guczi, L. 2001Catal. Today66271CrossRefGoogle Scholar
  30. [30]
    Sunajadevi, K.R., Sugunan, S. 2004React. Kinet. Catal. Lett.8211CrossRefGoogle Scholar
  31. [31]
    D’ Souza, L., Bera, P., Sampath, S. 2002J. Coll. Int. Sci.24692CrossRefGoogle Scholar
  32. [32]
    Chakrabarti, K., Whang, C.M. 2002Mat. Sci. Eng. B8826CrossRefGoogle Scholar
  33. [33]
    Kobayashi, M. 1982Chem. Eng. Sci.37393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Lachezar Radev
    • 1
  • Mariana Khristova
    • 2
  • Dimitar Mehandjiev
    • 2
  • Biserka Samuneva
    • 1
  1. 1.University of Chemical Technology and MetallurgySofiaBulgaria
  2. 2.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations