Catalysis Letters

, Volume 112, Issue 1–2, pp 19–26 | Cite as

Methane oxidation over nanocrystalline Ce0.45Zr0.45La0.10O2-δ/Pt and Ce0.9Sm0.1O2-δ/Pt anodes

  • A. A. Yaremchenko
  • V. V. Kharton
  • A. A. Valente
  • E. V. Frolova
  • M. I. Ivanovskaya
  • A. V. Kovalevsky
  • F. M. B. Marques
  • J. Rocha

The electrocatalytic activity of composite anodes, comprising metallic platinum and nanocrystalline Pt-modified Ce0.45Zr0.45La0.10O2-δ and Ce0.9Sm0.1O2-δ , was evaluated for the oxidation of dry methane in a solid oxide fuel cell (SOFC) – type reactor with yttria-stabilized zirconia solid electrolyte. At 923–1073 K, the total combustion is dominant, whilst above 1100 K the composite anodes exhibit significant catalytic activity towards the partial oxidation of methane (POM). At 1223 K and for a O2:CH4 ratio equal to 0.5, stoichiometric for the POM reaction, CO selectivity and CH4 conversion over Ce0.9Sm0.1O2-δ /Pt achieves 55% and 41%, respectively. Under these conditions, Ce0.45Zr0.45La0.10O2-δ /Pt anodes possess higher catalytic activity for partial oxidation, associated with the lower lattice oxygen mobility and instability of the Ce0.45Zr0.45La0.10O2-δ cubic fluorite structure, and provide 54% conversion efficiency with 73% selectivity to carbon monoxide. Further increase in CH4 conversion and CO selectivity can be achieved by packing the reactor with an additional catalyst, such as Pt-promoted Ce0.45Zr0.45La0.10O2-δ or LaNiO3-δ / Al2O3 .


ceria partial oxidation methane synthesis gas SOFC anode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ormerod, R.M. 2003Chem. Soc. Rev.3217CrossRefGoogle Scholar
  2. 2.
    Minh, N.Q. 2004Solid State Ionics174271CrossRefGoogle Scholar
  3. 3.
    Alcaide, F., Cabot, P.L., Brillas, E. 2006J. Power Sources15347CrossRefGoogle Scholar
  4. 4.
    Mogensen, M., Kammer, K. 2003Annu. Rev. Mater. Res.33321CrossRefGoogle Scholar
  5. 5.
    Rösch, B., Tu, H., Störmer, A.O., Müller, A.C., Stimming, U. 2004Solid State Ionics175113CrossRefGoogle Scholar
  6. 6.
    Murray, E.P., Tsai, T., Barnett, S.A. 1999Nature400649CrossRefGoogle Scholar
  7. 7.
    Yaremchenko, A.A., Valente, A.A., Kharton, V.V., Bashmakov, I.A., Rocha, J., Marques, F.M.B. 2003Catal. Comm.4477CrossRefGoogle Scholar
  8. 8.
    Itome, M., Nelson, A.E. 2006Catal. Lett.10621CrossRefGoogle Scholar
  9. 9.
    Park, S., Gorte, R.J., Vohs, J.M. 2000Appl. Catal. A20055CrossRefGoogle Scholar
  10. 10.
    Wang, J.B., Jang, J.-C., Huang, T.-J. 2003J. Power Sources122122CrossRefGoogle Scholar
  11. 11.
    Gorte, R.J., Kim, H., Vohs, J.M. 2002J. Power Sources10610CrossRefGoogle Scholar
  12. 12.
    Tsipis, E.V., Kharton, V.V., Bashmakov, I.A., Naumovich, E.N., Frade, J.R. 2004J. Solid State Electrochem.8674CrossRefGoogle Scholar
  13. 13.
    Kharton, V.V., Naumovich, E.N., Tikhonovich, V.N., Bashmakov, I.A., Boginsky, L.S., Kovalevsky, A.V. 1999J. Power Sources79242CrossRefGoogle Scholar
  14. 14.
    Ramírez-Cabrera, E., Atkinson, A., Chadwick, D. 2002Appl. Catal. B36193CrossRefGoogle Scholar
  15. 15.
    Pantu, P., Gavalas, G.R. 2002Appl. Catal. A223253CrossRefGoogle Scholar
  16. 16.
    Zhu, T., Flytzani-Stephanopoulos, M. 2001Appl. Catal. A208403CrossRefGoogle Scholar
  17. 17.
    Wang, W., Stagg-Williams, S.M., Noronha, F.B., Mattos, L.V., Passos, F.B. 2004Catal. Today98553CrossRefGoogle Scholar
  18. 18.
    Kuznetsova, T.G., Sadykov, V.A., Veniaminov, S.A., Alikina, G.M., Moroz, E.M., Rogov, V.A., Martyanov, O.N., Yudanov, V.F., Abornev, I.S., Neophytides, S. 2004Catal. Today91–92161CrossRefGoogle Scholar
  19. 19.
    Sadykov, V.A., Kuznetsova, T.G., Alikina, G.M., Frolova, Y.V., Lukashevich, A.I., Potapova, Y.V., Muzykantov, V.S., Rogov, V.A., Kriventsov, V.V., Kochubei, D.I., Moroz, E.M., Zyuzin, D.I., Zaikovskii, V.I., Kolomiichuk, V.N., Paukshtis, E.A., Burgina, E.B., Zyryanov, V.V., Uvarov, N.F., Neophytides, S., Kemnitz, E. 2004Catal. Today93–9545CrossRefGoogle Scholar
  20. 20.
    Di Monte, R., Kašpar, J. 2005J. Mater. Chem.15633CrossRefGoogle Scholar
  21. 21.
    Colón, G., Valdivieso, F., Pijolat, M., Baker, R.T., Calvino, J.J., Bernal, S. 1999Catal. Today50271CrossRefGoogle Scholar
  22. 22.
    York, A.P.E., Xiao, T., Green, M.L.H. 2003Top. Catal.22345CrossRefGoogle Scholar
  23. 23.
    Sadykov, V.A., Frolova, Yu.V, Alikina, G.M., Lukashevich, A.I., Neophytides, S. 2005React. Kinet. Catal. Lett.85375CrossRefGoogle Scholar
  24. 24.
    Choudhary, V.R., Uphade, B.S., Belhekar, A.A. 1996J. Catal.163312CrossRefGoogle Scholar
  25. 25.
    Batiot-Dupeyrat, C., Gallego, G.A.S., Mondragon, F., Barrault, J., Tatibouët, J.-M. 2005Catal. Today107–108474CrossRefGoogle Scholar
  26. 26.
    Bartholomew, C.H. 1982Catal. Rev. Sci. Eng.2467Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. A. Yaremchenko
    • 1
  • V. V. Kharton
    • 1
    • 2
  • A. A. Valente
    • 3
  • E. V. Frolova
    • 2
  • M. I. Ivanovskaya
    • 2
  • A. V. Kovalevsky
    • 1
  • F. M. B. Marques
    • 1
  • J. Rocha
    • 3
  1. 1.Department of Ceramics and Glass Engineering, CICECOUniversity of AveiroAveiroPortugal
  2. 2.Institute of Physicochemical ProblemsBelarus State UniversityMinskBelarus
  3. 3.Department of Chemistry, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations