Catalysis Letters

, Volume 110, Issue 1–2, pp 77–84 | Cite as

On the mechanism of methanol synthesis and the water-gas shift reaction on ZnO



Zinc oxide catalyses both methanol synthesis and the forward and ‘everse water-gas shift reaction (f- and r- WGSR). Copper also catalyses both reactions, but at lower temperatures than ZnO. Presently the combination of Cu and ZnO stabilized by Al2O3 is the preferred catalyst for methanol synthesis and for the f- and r- WGSR. On Cu, the mechanism of methanol synthesis is by hydrogenation of an adsorbed bidentate formate [1] (the most stable adsorbed species in methanol synthesis), while the f- and r- WGSR proceeds by a redox mechanism. The f-WGSR proceeds by H2O oxidizing the Cu and CO, reducing the adsorbed oxide and the r-WGSR proceeds by CO2 oxidising the Cu and H2, reducing it [2–5]. Here we show that the mechanisms of both reactions are subtly different on ZnO. While methanol is shown to be formed on ZnO through a formate intermediate, it is a monodentate formate species which is the intermediate; the f- and r-WGS reactions also proceed through a formate – a bidentate formate - in sharp contrast to the mechanism on Cu.


Temperature Program Desorption Methanol Synthesis Anion Vacancy Formate Species Adsorbed Formate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowker, M., Hadden, R.A., Houghton, H., Hyland, J.N.K., Waugh, K.C. 1988J. Catal.109263CrossRefGoogle Scholar
  2. 2.
    Chinchen, G.C., Spencer, M.S., Waugh, K.C., Whan, D.A. 1987J. Chem. Soc. Faraday Trans. 183213CrossRefGoogle Scholar
  3. 3.
    Hadden RA, Vandervell HD, Waugh KC and Webb G (1988) aa. Proc 9th Int Cong Catal, 1835.Google Scholar
  4. 4.
    Colbourn, E., Hadden, R.A., Vandervell, H.D., Waugh, K.C., Webb, G. 1991J. Catal.130514CrossRefGoogle Scholar
  5. 5.
    Elliott, A.J., Watson, M.J., Sakakini, B.H., Tabatabaei, J., Zemichael, F.W., Waugh, K.C. 2002Catal. Let.791CrossRefGoogle Scholar
  6. 6.
    G Natta, “Catalysis”, vol 3, ed. P H Emmett (Reinhold, New York, 1955).Google Scholar
  7. 7.
    Ueno, A., Onishi, T., Tamura, K. 1970Trans. Faraday Soc.66756CrossRefGoogle Scholar
  8. 8.
    Ueno, A., Onishi, T., Tamura, K. 1971Trans Faraday Soc.673585CrossRefGoogle Scholar
  9. 9.
    Bowker, M., Houghton, H., Waugh, K.C. 1981J. Chem. Soc. Faraday Trans, 113023CrossRefGoogle Scholar
  10. 10.
    Bowker, M., Hyland, J.N.K, Vandervell, H.D., Waugh, K.C. 1984Proc 8th Int Cong CatalVerlag ChemieWeinheim FDR35vol IIGoogle Scholar
  11. 11.
    Bowker, M., Houghton, H., Waugh, K.C., Giddings, T., Green, M. 1983J. Catal.84252CrossRefGoogle Scholar
  12. 12.
    Chadwick, D., Zheng, K. 1993Catal. Lett.20231CrossRefGoogle Scholar
  13. 13.
    Shido, T., Iwasawa, Y. 1991J. Catal.129343CrossRefGoogle Scholar
  14. 14.
    Shido, T., Iwasawa, Y. 1993J. Catal.140575CrossRefGoogle Scholar
  15. 15.
    Ludviksson, A., Zhang, R., Campbell, C.T., Griffiths, K. 1994Surf. Sci.31364CrossRefGoogle Scholar
  16. 16.
    Ludviksson, A., Ernst, K. H, Zhang, R., Campbell, C.T. 1993J. Catal.141380CrossRefGoogle Scholar
  17. 17.
    Yoshihara, J., Campbell, C.T. 1998Surf. Sci.407256CrossRefGoogle Scholar
  18. 18.
    Vohs, J.M., Barteau, M.A. 1986Surf. Sci.17691CrossRefGoogle Scholar
  19. 19.
    Gray, R.R., Nodine, M.H., Henrich, V.E., Ziegler, H.J., Solomonaa, E.I. 1980J. Am. Chem. Soc.1026752CrossRefGoogle Scholar
  20. 20.
    Petrie, W.T., Vohs, J.M. 1991Surf. Sci.245315CrossRefGoogle Scholar
  21. 21.
    Akhter, S., Lui, K., Kung, H.H. 1985J. Phys. Chem.891958CrossRefGoogle Scholar
  22. 22.
    Akhter, S., Cheng, W.H., Lui, K., Kung, H.H. 1984J. Catal.85437CrossRefGoogle Scholar
  23. 23.
    Waugh, K.C. 1988App. Cat.43315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.School of ChemistryUniversity of ManchesterManchester
  2. 2.Davy Process TechnologyTechnology CentreStockton-on-Tees

Personalised recommendations