Catalysis Letters

, Volume 108, Issue 1–2, pp 71–78 | Cite as

Catalytic Activities of Al2O3-promoted NiSO4/TiO2 for Acid Catalysis

  • Jong Rack Sohn
  • Jun Seob Lim

A series of catalysts, NiSO4/Al2O3–TiO2, for acid catalysis was prepared by the impregnation method, where support, Al2O3–TiO2 was prepared by the coprecipitation method using a mixed aqueous solution of titanium tetrachloride and aluminum nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or Al2O3) to TiO2 shifted the phase transition of TiO2 from amorphous to anatase to higher temperature because of the interaction between nickel sulfate (or Al2O3) and TiO2. 15-NiSO4/5-Al2O3–TiO2 containing 15 wt% NiSO4 and 5 mol% Al2O3, and calcined at 400°C exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The charge transfer from Ti atoms to the neighboring Al atoms strengthens the Al–O bond between Al and the surface sulfate species. The addition of Al2O3 up to 5 mol% enhanced the acidity, thermal property, and catalytic activities of NiSO4/Al2O3–TiO2 gradually due to the interaction between Al2O3 and TiO2 and consequent formation of Al–O–Ti bond.


NiSO4/Al2O3–TiO2 acidity, Al2O3-promotion cumene dealkylation 2-propanol dehydration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheung, T.K., d‘Itri, J.L., Lange, F.C., Gates, B.C. 1995Catal. Lett.31153Google Scholar
  2. 2.
    Tanabe, K., Misono, M., Ono, Y., Hattori, H. 1989H, New Solid Acids and BasesKodansha-ElsevierTokyo185Google Scholar
  3. 3.
    Olah, G.A., Prakash, G.K.S., Sommer, J. 1985SuperacidsWiley-InterscienceNew York, USA3352Google Scholar
  4. 4.
    Ono, Y. 2003Catal. Today813CrossRefGoogle Scholar
  5. 5.
    Arata, K. 1990Adv. Catal.37165Google Scholar
  6. 6.
    Sohn, J.R., Lee, S.H. 2004Appl. Catal. A: Gen.26689CrossRefGoogle Scholar
  7. 7.
    Bosman, H.J.M., Kruissink, E.C., Spoel, J., Brink, F. 1994J. Catal.148660CrossRefGoogle Scholar
  8. 8.
    Davis, R.J., Liu, Z. 1997Chem. Mater.92311CrossRefGoogle Scholar
  9. 9.
    Sohn, J.R., Jang, H.J. 1991J. Catal.132563CrossRefGoogle Scholar
  10. 10.
    Doh, I.J., Pae, Y.I., Sohn, J.R. 1991J. Ind. Eng. Chem.5161Google Scholar
  11. 11.
    Fung, J., Wang, I. 1996J. Catal.164166CrossRefGoogle Scholar
  12. 12.
    Maksimov, G.M., Fedotov, M.A., Bogdanov, S.V., Litvak, G.S., Golovin, A.V., Likholobov, V.A. 2000J. Mol. Catal. A:Chemical158435CrossRefGoogle Scholar
  13. 13.
    Contescu, C., Popa, V.T., Miller, J.B., Ko, E.I., Schwarz, J.A. 1996Chem. Eng. J.64265Google Scholar
  14. 14.
    Scheithauer, M., Grasselli, R.K., Knözinger, H. 1998Langmuir143019CrossRefGoogle Scholar
  15. 15.
    Hucknall, D.J. 1974Selective Oxidation of HydrocarbonsAcademic PressLondon/New YorkGoogle Scholar
  16. 16.
    Itoh, M., Hattori, H., Tanabe, K. 1974J. Catal.35225CrossRefGoogle Scholar
  17. 17.
    Tanabe, K., Ishiya, G., Ichikawa, I., Hattori, H. 1972Bull. Chem. Soc. Jpn.4547Google Scholar
  18. 18.
    Vogt, E.T.C., Boot, A., Dillen, A.J., Geus, J.W., Janssen, F.J.J.G., Kerkhof, F.M.G. 1988J. Catal.114313CrossRefGoogle Scholar
  19. 19.
    Hua, W., Xia, Y., Yue, Y., Gao, Z. 2000J. Catal.196104CrossRefGoogle Scholar
  20. 20.
    Moreno, J.A., Poncelet, G. 2001J. Catal.203153CrossRefGoogle Scholar
  21. 21.
    Sohn, J.R., Park, W.C. 2000Bull. Korean Chem. Soc.211063Google Scholar
  22. 22.
    Sohn, J.R., Park, W.C. 2002Appl. Catal. A: Gen.23011CrossRefGoogle Scholar
  23. 23.
    Sohn, J.R., Cho, S.G., Pae, Y.I., Hayashi, S. 1996J. Catal.159170CrossRefGoogle Scholar
  24. 24.
    Sohn, J.R., Seo, D.H., Lee, S.H. 2004J. Ind. Eng. Chem.10309Google Scholar
  25. 25.
    Sohn, J.R., Kim, J.G., Kwon, T.D., Park, E.H. 2002Langmuir181666Google Scholar
  26. 26.
    Saur, O., Bensitel, M., Saad, A.B.M., Lavalley, J.C., Tripp, J.C., Morrow, B.A. 1986J. Catal.99104CrossRefGoogle Scholar
  27. 27.
    Yamaguchi, T. 1990Appl. Catal.611Google Scholar
  28. 28.
    Jin, T., Yamaguchi, T., Tananbe, K. 1986J. Phys. Chem.904794CrossRefGoogle Scholar
  29. 29.
    Cerrato, G., Marchese, L., Morterra, C. 1993Appl. Surf. Sci.70200CrossRefGoogle Scholar
  30. 30.
    Alemany, L.J., Berti, F., Busca, G., Ramis, G., Robba, D., Toledo, G.P., Trombetta, M. 1996Appl. Catal. B: Environ.10299CrossRefGoogle Scholar
  31. 31.
    Sohn, J.R., Cho, E.S. 2005Appl. Catal. A:Gen.282147CrossRefGoogle Scholar
  32. 32.
    Pae, Y.I., Bae, M.H., Park, W.C., Sohn, J.R. 2004Bull. Korean Chem. Soc.251881Google Scholar
  33. 33.
    Sohn, J.R., Park, W.C. 2003Appl. Catal. A: Gen.239269CrossRefGoogle Scholar
  34. 34.
    Siriwardane, R.V., Poston, J.A.,Jr., Fisher, E.P., Shen, M.S., Miltz, A.L. 1999Appl. Surf. Sci.152219CrossRefGoogle Scholar
  35. 35.
    Sohn, J.R. 2004J. Ind. Eng. Chem.101Google Scholar
  36. 36.
    Satsuma, A., Hattori, A., Mizutani, K., Furuta, A., Miyamoto, A., Hattori, T., Murakami, Y. 1988J. Phys. Chem.926052Google Scholar
  37. 37.
    S. J. Decanio, J. R. Sohn P. O. Fritz and J. H. Lunsford, 101 (1986) 132Google Scholar
  38. 38.
    Tanabe, K. 1970Solid Acids and BasesKodanshaTokyo103Google Scholar
  39. 39.
    Sohn, J.R., Ozaki, A. 1980J. Catal.61291CrossRefGoogle Scholar
  40. 40.
    Xia, Y., Hua, W., Gao, Z. 1999Appl. Catal. A: Gen.185293CrossRefGoogle Scholar
  41. 41.
    Sanderson, R.T. 1976Chemical Bonds and Bond EnergyAcademic PressNew York75Google Scholar
  42. 42.
    Gao, Z., Xia, Y., Hua, W., Miao, C. 1998Topics Catal.6101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Engineering CollegeKyungpook National UniversityTaeguKorea

Personalised recommendations