Skip to main content

Advertisement

Log in

Spectroscopic and Kinetic Analysis of a New Low-Temperature Methanol Synthesis Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The spectroscopy and kinetics of a new low-temperature methanol synthesis method were studied by using in situ DRIFTS on Cu/ZnO catalysts from syngas (CO/CO2/H2) using alcohol promoters. The adsorbed formate species easily reacted with ethanol or 2-propanol at 443 K and atmospheric pressure, and the reaction rate with 2-propanol was faster than that with ethanol. Alkyl formate was easily reduced to form methanol at 443 K and 1.0 MPa, and the hydrogenation rate of 2-propyl formate was found to be faster than that of ethyl formate. 2-Propanol used as promoter exhibited a higher activity than ethanol in the reaction of the low-temperature methanol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.G. Herman G.W. Simmons K. Klier (1981) Stud. Surf. Sci. Catal. 7 474

    Google Scholar 

  2. G.H. Graaf P. Sijtsema E.J. Stamhuis G. Oostem (1986) Chem. Eng. Sci. 41 2883 Occurrence Handle1:CAS:528:DyaL2sXmvFSktw%3D%3D

    CAS  Google Scholar 

  3. M. Marchionna M. Lami A. Galleti (1997) Chemtech. 27 27 Occurrence Handle1:CAS:528:DyaK2sXitlyksLw%3D

    CAS  Google Scholar 

  4. J. Haggin, Chem. & Eng. News (1986) 21, Aug. 4

  5. Brookhaven National Laboratory, US Patents, 461479, 4619946, 4623634, 4613623 (1986), 4935395 (1990)

  6. V.M. Palekar H. Jung J.W. Tierney I. Wender (1993) Appl. Catal. A Gen. 102 13 Occurrence Handle10.1016/0926-860X(93)85152-F Occurrence Handle1:CAS:528:DyaK3sXlsVWmtb0%3D

    Article  CAS  Google Scholar 

  7. Kirk-Othmer, in: Encyclopedia of Chemical Technology, Vol. 13, 2nd ed. (Wiley, New York, 1964), p. 390

  8. N. Tsubaki Y. Sakaiya K. Fujimoto (1999) Appl. Catal. A Gen. 180 L11

    Google Scholar 

  9. N. Tsubaki M. Ito K. Fujimoto (2001) J. Catal. 197 224 Occurrence Handle10.1006/jcat.2000.3077 Occurrence Handle1:CAS:528:DC%2BD3cXptVGnur8%3D

    Article  CAS  Google Scholar 

  10. N. Tsubaki J.Q. Zeng Y. Yoneyama K. Fujimoto (2001) Catal. Commun. 2 213 Occurrence Handle1:CAS:528:DC%2BD3MXnt1eltbY%3D

    CAS  Google Scholar 

  11. J.Q. Zeng K. Fujimoto N. Tsubaki (2002) Energy & Fuels 16 83 Occurrence Handle10.1021/ef0100395 Occurrence Handle1:CAS:528:DC%2BD3MXoslWksL8%3D

    Article  CAS  Google Scholar 

  12. R. Prasert T. Yamagami V. Tharapong Y. Yoneyama M. Ito N. Tsubaki (2003) Energy Fuels 17 817

    Google Scholar 

  13. I.A. Fisher A.T. Bell (1998) J. Catal. 178 153 Occurrence Handle10.1006/jcat.1998.2134 Occurrence Handle1:CAS:528:DyaK1cXls1Shtb4%3D

    Article  CAS  Google Scholar 

  14. J.F. Edwards G.L. Schrader (1985) J. Catal. 94 175 Occurrence Handle10.1016/0021-9517(85)90093-4 Occurrence Handle1:CAS:528:DyaL2MXltVCnsrg%3D

    Article  CAS  Google Scholar 

  15. I.A. Fisher A.T. Bell (1997) J. Catal. 172 222 Occurrence Handle10.1006/jcat.1997.1870 Occurrence Handle1:CAS:528:DyaK2sXnsV2ht70%3D

    Article  CAS  Google Scholar 

  16. X. Mugniery T. Chafik M. Primet D. Bianchi (1999) Catal. Today 52 15 Occurrence Handle10.1016/S0920-5861(99)00058-9 Occurrence Handle1:CAS:528:DyaK1MXjvFWhur0%3D

    Article  CAS  Google Scholar 

  17. N.Y. Topsøe H. Topsøe (1999) J. Mol. Catal. A Chem. 141 95 Occurrence Handle10.1016/S1381-1169(98)00253-2

    Article  Google Scholar 

  18. J. Greeley A.A. Gokhale J. Kreuser J.A. Dumesic H. Topsøe N.Y. Topsøe M. Mavrikakis (2003) J. Catal. 213 63 Occurrence Handle10.1016/S0021-9517(02)00040-4 Occurrence Handle1:CAS:528:DC%2BD38Xps1GlsL8%3D

    Article  CAS  Google Scholar 

  19. T. Fujitani J. Nakamura (2000) Appl. Catal. A Gen. 191 111 Occurrence Handle10.1016/S0926-860X(99)00313-0 Occurrence Handle1:CAS:528:DyaK1MXnvFSmuro%3D

    Article  CAS  Google Scholar 

  20. S. Fujita S. Moribe Y. Kanamori M. Kakudate N. Takezawa (2001) Appl. Catal. A Gen. 207 121 Occurrence Handle10.1016/S0926-860X(00)00616-5 Occurrence Handle1:CAS:528:DC%2BD3MXpt1agtQ%3D%3D

    Article  CAS  Google Scholar 

  21. D. Bianchi T. Chafik M. Khalfallah S.J. Teichner (1993) Appl. Catal. A Gen. 105 223 Occurrence Handle10.1016/0926-860X(93)80250-T Occurrence Handle1:CAS:528:DyaK2cXhs1eisLc%3D

    Article  CAS  Google Scholar 

  22. R. Yang Y. Fu Y. Zhang N. Tsubaki (2004) J. Catal. 228 23 Occurrence Handle1:CAS:528:DC%2BD2cXoslSnsLY%3D

    CAS  Google Scholar 

  23. R. Yang Y. Zhang N. Tsubaki (2005) Catal. Commun. 6 275 Occurrence Handle1:CAS:528:DC%2BD2MXisFyit74%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritatsu Tsubaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, R., Zhang, Y. & Tsubaki, N. Spectroscopic and Kinetic Analysis of a New Low-Temperature Methanol Synthesis Reaction. Catal Lett 106, 153–159 (2006). https://doi.org/10.1007/s10562-005-9623-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-9623-3

Keywords

Navigation