Advertisement

Catalysis Letters

, Volume 106, Issue 3–4, pp 153–159 | Cite as

Spectroscopic and Kinetic Analysis of a New Low-Temperature Methanol Synthesis Reaction

  • Ruiqin Yang
  • Yi Zhang
  • Noritatsu Tsubaki
Article

Abstract

The spectroscopy and kinetics of a new low-temperature methanol synthesis method were studied by using in situ DRIFTS on Cu/ZnO catalysts from syngas (CO/CO2/H2) using alcohol promoters. The adsorbed formate species easily reacted with ethanol or 2-propanol at 443 K and atmospheric pressure, and the reaction rate with 2-propanol was faster than that with ethanol. Alkyl formate was easily reduced to form methanol at 443 K and 1.0 MPa, and the hydrogenation rate of 2-propyl formate was found to be faster than that of ethyl formate. 2-Propanol used as promoter exhibited a higher activity than ethanol in the reaction of the low-temperature methanol synthesis.

Keywords

in situ DRIFT methanol ethanol 2-propanol Cu/ZnO syngas(CO/CO2/H2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herman, R.G., Simmons, G.W., Klier, K. 1981Stud. Surf. Sci. Catal.7474Google Scholar
  2. 2.
    Graaf, G.H., Sijtsema, P., Stamhuis, E.J., Oostem, G. 1986Chem. Eng. Sci.412883Google Scholar
  3. 3.
    Marchionna, M., Lami, M., Galleti, A. 1997Chemtech.2727Google Scholar
  4. 4.
    J. Haggin, Chem. & Eng. News (1986) 21, Aug. 4Google Scholar
  5. 5.
    Brookhaven National Laboratory, US Patents, 461479, 4619946, 4623634, 4613623 (1986), 4935395 (1990)Google Scholar
  6. 6.
    Palekar, V.M., Jung, H., Tierney, J.W., Wender, I. 1993Appl. Catal. A Gen.10213CrossRefGoogle Scholar
  7. 7.
    Kirk-Othmer, in: Encyclopedia of Chemical Technology, Vol. 13, 2nd ed. (Wiley, New York, 1964), p. 390Google Scholar
  8. 8.
    Tsubaki, N., Sakaiya, Y., Fujimoto, K. 1999Appl. Catal. A Gen.180L11Google Scholar
  9. 9.
    Tsubaki, N., Ito, M., Fujimoto, K. 2001J. Catal.197224CrossRefGoogle Scholar
  10. 10.
    Tsubaki, N., Zeng, J.Q., Yoneyama, Y., Fujimoto, K. 2001Catal. Commun.2213Google Scholar
  11. 11.
    Zeng, J.Q., Fujimoto, K., Tsubaki, N. 2002Energy & Fuels1683CrossRefGoogle Scholar
  12. 12.
    Prasert, R., Yamagami, T., Tharapong, V., Yoneyama, Y., Ito, M., Tsubaki, N. 2003Energy Fuels17817Google Scholar
  13. 13.
    Fisher, I.A., Bell, A.T. 1998J. Catal.178153CrossRefGoogle Scholar
  14. 14.
    Edwards, J.F., Schrader, G.L. 1985J. Catal.94175CrossRefGoogle Scholar
  15. 15.
    Fisher, I.A., Bell, A.T. 1997J. Catal.172222CrossRefGoogle Scholar
  16. 16.
    Mugniery, X., Chafik, T., Primet, M., Bianchi, D. 1999Catal. Today5215CrossRefGoogle Scholar
  17. 17.
    Topsøe, N.Y., Topsøe, H. 1999J. Mol. Catal. A Chem.14195CrossRefGoogle Scholar
  18. 18.
    Greeley, J., Gokhale, A.A., Kreuser, J., Dumesic, J.A., Topsøe, H., Topsøe, N.Y., Mavrikakis, M. 2003J. Catal.21363CrossRefGoogle Scholar
  19. 19.
    Fujitani, T., Nakamura, J. 2000Appl. Catal. A Gen.191111CrossRefGoogle Scholar
  20. 20.
    Fujita, S., Moribe, S., Kanamori, Y., Kakudate, M., Takezawa, N. 2001Appl. Catal. A Gen.207121CrossRefGoogle Scholar
  21. 21.
    Bianchi, D., Chafik, T., Khalfallah, M., Teichner, S.J. 1993Appl. Catal. A Gen.105223CrossRefGoogle Scholar
  22. 22.
    Yang, R., Fu, Y., Zhang, Y., Tsubaki, N. 2004J. Catal.22823Google Scholar
  23. 23.
    Yang, R., Zhang, Y., Tsubaki, N. 2005Catal. Commun.6275Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of EngineeringUniversity of ToyamaGofuku 3190Japan
  2. 2.Department of Applied ChemistryShenyang Institute of Chemical TechnologyShenyangP. R. China

Personalised recommendations