Catalysis Letters

, Volume 104, Issue 1–2, pp 17–21 | Cite as

COS Hydrolysis Using Zinc-promoted Alumina Catalysts

  • Hongmei Huang
  • Nicola Young
  • B. Peter Williams
  • Stuart H. Taylor
  • Graham Hutchings

The effect of doping alumina catalysts with zinc oxide is investigated for the COS hydrolysis reaction (COS + H2O=CO2 + H2S) at 150 °C. The effect of the catalyst preparation method is described and discussed, and two methods are compared, namely: impregnation by incipient wetness of zinc nitrate followed by calcination to form the oxide and coprecipitation to form a hydroxide followed by calcination. The most effective zinc-promoted catalysts are prepared using the incipient wetness impregnation method. The promotional effect of zinc oxide on alumina is only observed on the basis of intrinsic activity and is not particularly significant at the initial time on stream, but becomes more marked with increased reaction time. The addition of the zinc oxide therefore decreases the deactivation and experiments using catalysts pretreated with H2S and H2O show that the alumina is deactivated by adsorption of these reactants. However, the effect is related to ZnO acting as a sulfur scavenger at 150 °C and we conclude that any promotional effect is likely to be relatively short lived.

Key words

COS hydrolysis γ-alumina catalyst promotion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laperdix, E., Justin, I., Constentin, G., Saur, O., Lavalley, J.C., Aboulayt, A., Ray, J.L., Nédez, C. 1998Appl. Catal. B17167CrossRefGoogle Scholar
  2. 2.
    Bachelier, J., Aboulyat, A., Lavalley, J.C., Legendre, O., Luck, F. 1993Catal. Today1755CrossRefGoogle Scholar
  3. 3.
    Saur, O., Bensitel, M., Saad, A.B.M., Lavalley, J.C., Tripp, C.P., Morrow, B.A. 1986J. Catal.99104CrossRefGoogle Scholar
  4. 4.
    Williams, B.P., Young, N.C., West, J., Rhodes, C., Hutchings, G.J. 1999Catal. Today4999CrossRefGoogle Scholar
  5. 5.
    Rhodes, C., Riddel, S.A., West, J., Williams, B.P., Hutchings, G.J. 2000Catal. Today59443CrossRefGoogle Scholar
  6. 6.
    West, J., Williams, B.P., Young, N.C., Rhodes, C., Hutchings, G.J. 2001Catal. Lett.74111CrossRefGoogle Scholar
  7. 7.
    George, Z.M. 1974J. Catal.35218CrossRefGoogle Scholar
  8. 8.
    Fiedorow, R., Léauté, R., Dalla Lana, I.G. 1984J. Catal.85339CrossRefGoogle Scholar
  9. 9.
    Ivanov, V.A., Piéplu, A., Lavalley, J.C., Nortier, P. 1995Appl. Catal. A131323CrossRefGoogle Scholar
  10. 10.
    Tan, S., Li, C., Liang, S., Guo, H. 1991Catal. Lett.8155CrossRefGoogle Scholar
  11. 11.
    Shangguan, J., Li, C.H., Guo, H.X. 1998J. Natural Gas Chem.716Google Scholar
  12. 12.
    West, J., Williams, B.P., Young, N., Rhodes, C., Hutchings, G.J. 2001Catal. Commun.2135CrossRefGoogle Scholar
  13. 13.
    Thomas, B., Williams, B.P., Young, N., Rhodes, C., Hutchings, G.J. 2003Catal. Lett.86201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Hongmei Huang
    • 1
  • Nicola Young
    • 2
  • B. Peter Williams
    • 2
  • Stuart H. Taylor
    • 1
  • Graham Hutchings
    • 1
  1. 1.School of Chemistry, Main CollegeCardiff UniversityCardiffUK
  2. 2.Johnson Matthey CatalystsTeesideUK

Personalised recommendations