Advertisement

Catalysis Letters

, Volume 102, Issue 1–2, pp 1–7 | Cite as

In situ nanoscale wet imaging of the heterogeneous catalyzationof nitriles in a solution phase: novel hydrogenation chemistry through nanocatalysts on nanosupports

  • Pratibha L. Gai
  • K. Kourtakis
  • E.D. Boyes
Article

Abstract

Wet-environmental transmission electron microscopy studies of heterogeneous hydrogenation of complex nitriles in a liquid phase over new mesoporous cobalt-promoted ruthenium nanocatalysts on reducible nanotitania supports are presented. The desorbed organic products in the dynamic liquid phase hydrogenation are imaged situ on the nanoscale. The direct studies on the “nanocomposite” catalysts are correlated with parallel reaction chemistry measurements. They demonstrate high hydrogenation activity at low operating temperatures in the presence of atomic scale anion vacancy defects associated with Lewis acid sites at the nanosupport surface and an electronic and synergistic contribution to the promoter mechanism. The combined synergistic effect between the two metals and the interaction with the reduced nanosupport leading to an electronic modification lead to highly reactive site for the hydrogenation catalysis. The results illustrate novel selective hydrogenation chemistry with mesoporous nanocatalyst systems on nanosupports.

Keywords

hydrogenation nitriles in solution phase wet in situ imaging nanocatalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Bellefon, C., Fouilloux, P. 1994Catal. Reviews. Sci. Eng36459Google Scholar
  2. 2.
    Kauffman, G.J. 1988J. Chem. Ed65803Google Scholar
  3. 3.
    Besson, M.,  et al. 1990Bull. Soc. Chim. Fr1275Google Scholar
  4. 4.
    J. Volf et al., Stud. Surf. Sci. Catal. 27, L. Cerveny (ed), (Elsevier, 1986) 105.Google Scholar
  5. 5.
    Mares, F.,  et al. 1988J. Catal112145CrossRefGoogle Scholar
  6. 6.
    Greenfield, H. 1967Ind. Eng. Chem. Prod. Res. Dev6142CrossRefGoogle Scholar
  7. 7.
    Nakayama, T.,  et al. 1984J. Catal87108CrossRefGoogle Scholar
  8. 8.
    Tauster, S.J.,  et al. 1978J. Am. Chem. Soc100170Google Scholar
  9. 9.
    Sanchez, M.G., Gasquez, J.L. 1987J. Catal194120CrossRefGoogle Scholar
  10. 10.
    Gai(Gai-Boyes), P.L. 1992Catal. Reviews. Sci. Eng341Google Scholar
  11. 11.
    Bradley, B. 1978Metal AlkoxidesAcademic PressNew YorkGoogle Scholar
  12. 12.
    Gai, P.L., Kourtakis, K., Ziemecki, S.B. 2000Micrsc. Microanal6335Google Scholar
  13. 13.
    Gai, P.L. 2002Micrsc. Microanal8335Google Scholar
  14. 14.
    Micromeritics Inc., One Micromeritics Drive, Norcross, GA 30093–1877.Google Scholar
  15. 15.
    Brunauer, S., Emmett, P.H., Teller, E. 1938J. Amer. Chem. Soc60309CrossRefGoogle Scholar
  16. 16.
    Barret, E.P.,  et al. 1951J. Amer. Chem. Soc73373CrossRefGoogle Scholar
  17. 17.
    Gai, P.L.,  et al. 1995Science267667Google Scholar
  18. 18.
    Boyes, E.D., Gai, P.L. 1997Ultramicroscopy67219CrossRefGoogle Scholar
  19. 19.
    P.L. Gai, (a) Adv. Mat. 10 (1998) 1259; (b) Top. Catal. 21 (2002) 161.Google Scholar
  20. 20.
    P.L. Gai, Inst. Phys. Conf. Ser. (London, U.K.), 168- Section 9 (2002) 401.Google Scholar
  21. 21.
    Gai, P.L., Boyes, E.D. 2003Electron Microscopy in Heterogeneous CatalysisInstitute of Physics PublishersLondon UK and Philadelphia USAGoogle Scholar
  22. 22.
    D.F. Parsons et al., Adv. Bio. Med. Phys., 15, J.H. Lawrence et al., (eds) (Acad. Press, New York, 1974), p. 161.Google Scholar
  23. 23.
    Fukami, A.,  et al. 1985J. Electron Microsc3447Google Scholar
  24. 24.
    Daulton, T.,  et al. 2001Micrsc. Microanal7134Google Scholar
  25. 25.
    Hanton, S. 2001Chem. Rev3527CrossRefGoogle Scholar
  26. 26.
    Blanchin, M.,  et al. 1981J. PhysC395Google Scholar
  27. 27.
    Stoneham, A.M. 1981J. Am. Ceram. Soc6454Google Scholar
  28. 28.
    E. Ruckenstein, Growth of metal clusters J. Bourdon, J. (ed) (Elsevier 1981), 57.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Central Research and DevelopmentExperimental Station DuPontWilmingtonU.S.A
  2. 2.Department of Materials ScienceUniversity of DelawareNewarkU.S.A

Personalised recommendations