Catalysis Letters

, Volume 101, Issue 3–4, pp 181–185 | Cite as

n-Butane conversion on sulfated zirconia: in situ 13C MAS NMR monitoring of the kinetics of the 13C-label scrambling and isomerization

  • A.G. Stepanov
  • M.V. Luzgin
  • S.S. Arzumanov
  • W. Wang
  • M. Hunger
  • D. Freude


The kinetics of the conversion of 13C-labeled n-butane adsorbed on sulfated zirconia (SZ) were monitored by in situ 13C MAS NMR spectroscopy. Rate constants of n- to isobutane isomerization and of the 13C-isotope scrambling from the primary to the secondary carbon atoms in n-butane were determined. The monomolecular scrambling of the 13C-label in adsorbed n-butane has an activation energy of 17 ± 3 kcal  mol−1 and occurs faster than the bimolecular process of n-butane isomerization which has an activation energy of 15.1 ± 0.2 kcal  mol−1. The transfer of the selective 13C-label from the primary to the secondary carbon atom in the adsorbed n-butane seems to consist of two reaction steps: (i) a hydride abstraction by SZ leading to the formation of sec-butyl cations and (ii) a label scrambling in the sec-butyl cations. This two-step process with the formation of sec-butyl cations as intermediate increases the apparent activation energy for the 13C-label scrambling, which is almost twice as large compared with the activation energy for carbon scrambling of sec-butyl cations in a superacidic solution.


hydrogen exchange sulfated zirconia 13C MAS NMR n-butane conversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Song, X., Sayari, A. 1996Catal. Rev. -Sci. Eng.38329Google Scholar
  2. 2.
    Yadav, G.D., Nair, J.J. 1999Micropor. Mesopor. Mater.331CrossRefGoogle Scholar
  3. 3.
    Garin, F., Seyfried, L., Girard, P., Maire, G., Abdulsamad, A., Sommer, J. 1995J. Catal.15126CrossRefGoogle Scholar
  4. 4.
    Matsuhashi, H., Shibata, H., Nakamura, H., Arata, K. 1999Appl. Catal. A18799CrossRefGoogle Scholar
  5. 5.
    Adeeva, V., Lei, G.D., Sachtler, W.M.H. 1994Appl. Catal. A18L11CrossRefGoogle Scholar
  6. 6.
    Adeeva, V., Lei, G.D., Sachtler, W.M.H. 1995Catal. Lett.33135CrossRefGoogle Scholar
  7. 7.
    Suzuki, T., Okuhara, T. 2001Catal. Lett.72111CrossRefGoogle Scholar
  8. 8.
    Luzgin, M.V., Arzumanov, S.S., Shmachkova, V.P., Kotsarenko, N.S., Rogov, V.N., Stepanov, A.G. 2003J. Catal.220233CrossRefGoogle Scholar
  9. 9.
    Sommer, J., Jost, R., Hachoumy, M. 1997Catal. Today.38309CrossRefGoogle Scholar
  10. 10.
    Mastikhin, V.M., Nosov, A.V., Filimonova, S.V., Terskikh, V.V., Kotsarenko, N.S., Shmachkova, V.P., Kim, V.I. 1995J. Mol. Catal. A10181CrossRefGoogle Scholar
  11. 11.
    Levenspiel, O. 1962Chemical Reaction EngineeringWileyNew York, London9Google Scholar
  12. 12.
    Ravdel, A.A.Ponomareva, A.M. eds. 1983Handbook for Physical and Chemical ValuesKhimiaLeningradGoogle Scholar
  13. 13.
    Brouwer, D.M. 1968Rec. Trav. Chim. Pays Bas871435Google Scholar
  14. 14.
    Otvos, J.W., Stevenson, D.P., Wagner, C.D., Beeck, O. 1948J.␣Chem. Phys.16745CrossRefGoogle Scholar
  15. 15.
    Na, K., Okuhara, T., Misono, M. 1995J. Chem. Soc. Faraday Trans.91367CrossRefGoogle Scholar
  16. 16.
    Zarkalis, A.S., Hsu, C.Y., Gates, B.C. 1996Catal. Lett.371CrossRefGoogle Scholar
  17. 17.
    Boronat, M., Viruela, P., Corma, A. 1998J. Phys. Chem. A102982CrossRefGoogle Scholar
  18. 18.
    Saunders, M., Hagen, E.L., Rosenfeld, J. 1968J. Am. Chem. Soc.906882CrossRefGoogle Scholar
  19. 19.
    Brouwer, D.M., Hogeveen, H. 1972Progr. Phys. Org. Chem.9179Google Scholar
  20. 20.
    Brouwer, D.M., Oelderik, J.M. 1968Rec. Trav. Chim. Pays Bas87721Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Institute of Chemical TechnologyUniversity of StuttgartStuttgartGermany
  3. 3.Abteilung GrenzflächenphysikUniversität LeipzigLeipzigGermany

Personalised recommendations