Catalysis Letters

, Volume 99, Issue 3–4, pp 241–248 | Cite as

Correlation between acidic properties of nickel sulfate supported on TiO2-ZrO2 and catalytic activity for ethylene dimerization

  • Young Il Pae
  • Si Hoon Lee
  • Jong Rack Sohn


A series of catalysts, NiSO4/TiO2-ZrO2, for ethylene dimerization was prepared by the impregnation method using an aqueous solution of nickel sulfate. For NiSO4/TiO2 -ZrO2 sample, no diffraction line of nickel sulfate was observed up to 30 wt%, indicating good dispersion of nickel sulfate on the surface of TiO2-ZrO2. The addition of nickel sulfate to TiO2-ZrO2 shifted the phase transition of TiZrO4 from amorphous to orthorhombic to a higher temperature because of the interaction between nickel sulfate and TiO2-ZrO2. The number of acid sites of NiSO4/TiO2-ZrO2 increased in proportion to the nickel sulfate content up to 20 wt% of NiSO4. Nickel sulfate supported on TiO2-ZrO2 was found to be very active even at room temperature, giving a maximum in both activity and acidity when the catalyst containing 20% NiSO4 was calcined and evacuated at 500°C The asymmetric stretching frequency of the S=O bonds for NiSO4/TiO2-ZrO2 samples was related to the acidic properties and catalytic activity. That is, the higher the frequency, the higher both the number of acid sites and the catalytic activity for ethylene dimerization.


ethylene dimerization NiSO4/TiO2-ZrO2 acid strength acidity TiZrO4 compound asymmetric S=O stretching frequency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Urabe, K, Koga, M, Izumi, Y 1989J. Chem. Soc., Chem. Commun8071989Google Scholar
  2. Bernardi, F., Bottoni, A., Rossi, I. 1998J. Am. Chem. Soc.1207770CrossRefGoogle Scholar
  3. Sohn, J. R., Ozaki, A. 1979J. Catal.59303Google Scholar
  4. Sohn, J. R., Ozaki, A. 1980J. Catal.61291CrossRefGoogle Scholar
  5. Wendt, G, Fritsch, E, Schöllner, R, Siegel , HZ 1980Anorg. Allg. Chem.46751CrossRefGoogle Scholar
  6. Sohn, J. R., Shin, D. C. 1996J. Catal.160314CrossRefGoogle Scholar
  7. Berndt, G. F., Thomson, S. J., Webb, G. J. 1983J. Chem. Soc. Faraday Trans.179195Google Scholar
  8. Herwijnen, T. V., Doesburg, H. V., Jong, D. V. 1973J. Catal.28391CrossRefGoogle Scholar
  9. Sohn, J. R., Park, WC, Kim, HW 2002J. Catal.20969CrossRefGoogle Scholar
  10. Sohn, J. R., Park, W. C. 2000Bull. Korean Chem. Soc.211063Google Scholar
  11. Wendt, G, Hentschel, D, Finster, J, Schöllner, R 1983J. Chem. Soc. Faraday Trans. 1792013CrossRefGoogle Scholar
  12. Kimura, K., Ozaki, A. 1964J. Catal.3395CrossRefGoogle Scholar
  13. Maruya, JK, Ozaki , A 1973Bull. Chem. Soc. Jpn.46351Google Scholar
  14. Hartmann, M, Pöppl, A, Kevan , L 1996J. Phys. Chem.1009906CrossRefGoogle Scholar
  15. Elev, I. V., Shelimov, B. N., Kazansky, V. B. 1984J. Catal.89470CrossRefGoogle Scholar
  16. Choo, H., Kevan, L. 2001J. Phys. Chem. B1056353CrossRefGoogle Scholar
  17. Tannabe, K., Sumiyoshi, T., Shibata, K., Kiyoura, T., Kitagawa, J. 1974Bull. Chem. Soc. Jpn.471064Google Scholar
  18. Wu, J. C., Chung, C. S., Ay, C. L., Wang, I. 1984J. Catal.8798CrossRefGoogle Scholar
  19. Fung, J., Wang, F. 1991J. Catal.130577CrossRefGoogle Scholar
  20. Reddy, E. P, Rojas, T. C., Fernández, A. 2000Langmuir164217CrossRefGoogle Scholar
  21. Zorn, M. E., Tompkins, D. T., Zeltner, W. A., Anderson, M. A. 1999Appl Catal. B: Environmental231CrossRefGoogle Scholar
  22. Miciukiewicz, J, Mang, T, Knözinger, H 1995Appl. Catal. A122151CrossRefGoogle Scholar
  23. Jin, T., Yamaguchi, T., Tanabe, K. 1986J. Phys. Chem.904794Google Scholar
  24. Yamaguchi, T. 1990Appl. Catal.611CrossRefGoogle Scholar
  25. Saur, O., Bensitel, M., Saad, A. B. M., Lavalley, J. C., Tripp, C. P., Morrow, B. A. 1986J. Catal.99104CrossRefGoogle Scholar
  26. Hua, W., Xia, Y., Yue, Y, Gao, Z 2000J. Catal.196104CrossRefGoogle Scholar
  27. Siriwardane, RV, Poston, JA,Jr., Fisher, EP, Shen, MS, Miltz , AL 1999Appl. Surf. Sci.152219219CrossRefGoogle Scholar
  28. Sohn, J. R., Park, W. C. 2003Appl. Catal. A: General239269CrossRefGoogle Scholar
  29. Ebitani, K., Konishi, J., Hattori, H. 1991J. Catal.130257CrossRefGoogle Scholar
  30. Adeeva, V, Lei, GD, Sachtler, WMH 1994Appl. Catal.118L11L15CrossRefGoogle Scholar
  31. C. H. Lin and C. Y. Hsu, J. Chem. Soc. Chem. Commun 1479 (1992).Google Scholar
  32. Mercera, P. D. L., Ommen, JG, Doesburg, EBM, Burggraaf, AJ, Ross, JRH 1990Appl. Catal.57127CrossRefGoogle Scholar
  33. Sohn, J. R., Ryu, S. G. 1993Langmuir9126Google Scholar
  34. Yu, J. C., Lin, J., Kwok, R. W. M. 1998J. Phys. Chem. B1025094CrossRefGoogle Scholar
  35. Basila, M. R., Kantner, T. R. 1967J. Phys. Chem.71467Google Scholar
  36. Satsuma, A., Hattori, A., Mizutani, K., Furuta, A., Miyamoto, A., Hattori, T., Murakami, Y. 1988J. Phys. Chem.926052Google Scholar
  37. Sohn, J. R., Park, W. C., Park, S.E. 2002Catal. Lett.81259CrossRefGoogle Scholar
  38. Espinoza, R. L., Korf, C. J., Nicolaides, C. P., Snel, R. 1987Appl. Catal.29195Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Young Il Pae
    • 1
    • 2
  • Si Hoon Lee
    • 1
  • Jong Rack Sohn
    • 1
  1. 1.Department of Applied ChemistryEngineering College Kyungpook National UniversityTaeguKorea
  2. 2.Department of ChemistryUniversity of UlsanUlsanKorea

Personalised recommendations