Catalysis Letters

, Volume 107, Issue 3–4, pp 155–159 | Cite as

Sulfated and Persulfated TiO2/MCM-41 Prepared by Grafting Method and their Acid-catalytic Activities for Cyclization of Pseudoionone

  • Dai-Shi Guo
  • Zi-Feng Ma
  • Qi-Zhong Jiang
  • Hai-Hong Xu
  • Zheng-Fei Ma
  • Wei-Dong Ye

Solid acid catalysts of SO 4 2− /TiO2/MCM-41 and S2O 8 2− /TiO2/MCM-41 were prepared via grafting method and sulfate/persulfate promotion. The catalysts exhibited desirable activity and better selectivity for cyclization reaction of pseudoionone compared to traditional SO 4 2− /TiO2. A combination of XRD, N2 adsorption–desorption and FTIR spectroscopy indicated that the catalysts possess well-ordered mesostructure, and the grafted TiO2 are in highly dispersed amorphous form rather than crystalline phase. For S2O 8 2− /TiO2/MCM-41 higher S content and more Brønsted acid sites can be achieved by persulfation, which is favorable for the protons participated cyclization reaction. The similar Si–O–Ti–O–S=O structure of all acid sites on pore surface of the catalysts is attributed to the improvement of selectivity in comparison with SO 4 2− /TiO2.


grafted TiO2 sulfate/persulfate promotion MCM-41 cyclization of pseudoionone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dalai, A.K., Sethuraman, R., Katikaneni, S.P.R., Idem, R.O. 1998Ind. Eng. Chem. Res.373869CrossRefGoogle Scholar
  2. 2.
    Samantaray, S.K., Mishra, T., Parida, K.M. 2000J. Mol. Catal. A: Chem.156267CrossRefGoogle Scholar
  3. 3.
    Lu, G.Z. 1995Appl. Catal. A: Gen.13311CrossRefGoogle Scholar
  4. 4.
    Xia, Y.D., Hua, W.M., Gao, Z. 1998Catal. Lett.55101CrossRefGoogle Scholar
  5. 5.
    Sunajadevi, K.R., Sugunan, S. 2005Catal. Commun.9611Google Scholar
  6. 6.
    Venkatesan, C., Singh, A.P. 2002J. Mol. Catal. A: Chem.181179CrossRefGoogle Scholar
  7. 7.
    A. Mantilla, F. Tzompantzi, G. Ferrat, A. Lopez-Ortega, E. Romero, E. Ortiz-Islas, R. Geomez and M. Torres, Chem. Commun. (2004) 1498.Google Scholar
  8. 8.
    Maschmeyer, T., Rey, F., Sankar, G., Thomas, J.M. 1995Nature378159CrossRefGoogle Scholar
  9. 9.
    Zheng, S., Gao, L., Zhang, Q.H., Guo, J.K. 2000J. Mater. Chem.10723Google Scholar
  10. 10.
    Widenmeyer, M., Grasser, S., Köhler, K., Anwander, R. 2001Micropor. Mesopor. Mater.44–45327Google Scholar
  11. 11.
    Galleja, G., Gríeken, R., García, R., Melero, J.A., Iglesias, J. 2002J. Mol. Catal. A: Chem.182–183215Google Scholar
  12. 12.
    E. Brenna, C. Fuganti, S. Serra and P. Kraft, Eur. J. Org. Chem. (2002) 967.Google Scholar
  13. 13.
    Royals, E.E. 1946Ind. Eng. Chem.38546CrossRefGoogle Scholar
  14. 14.
    H. Otto, K. Hans and A. Lothar, US 4565894 (1986).Google Scholar
  15. 15.
    S. Kurt, E. Herwig and T. Helmut, US 5453546 (1995).Google Scholar
  16. 16.
    R. Udo, H. Ulrich and W. Dietmar, US 6288282 (2001).Google Scholar
  17. 17.
    Grün, M., Lauer, I., Unger, K.K. 1997Adv. Mater.9254CrossRefGoogle Scholar
  18. 18.
    Gao, X., Wachs, I.E. 1999Catal. Today51233CrossRefGoogle Scholar
  19. 19.
    Y.D. Xia, W.M. Hua and Z. Gao, Chem. Commun. (1999) 1899.Google Scholar
  20. 20.
    Katada, N., Endo, J., Notsu, K., Yasunobu, N., Naito, N., Niwa, M. 2000J. Phys. Chem. B10410321Google Scholar
  21. 21.
    Theimer, E.T. 1989Fragrance Chemistry: The Science of the Sense of SmellScience PressBeijingGoogle Scholar
  22. 22.
    Yamaguchi, T. 1990Appl. Catal.611Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Dai-Shi Guo
    • 1
  • Zi-Feng Ma
    • 1
  • Qi-Zhong Jiang
    • 1
  • Hai-Hong Xu
    • 1
  • Zheng-Fei Ma
    • 2
  • Wei-Dong Ye
    • 3
  1. 1.Department of Chemical EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingP.R. China
  3. 3.Xinchang Pharmaceutical FactoryZhejiang Pharmaceutics Co. Ltd.XinchangP.R. China

Personalised recommendations