Advertisement

Catalysis Letters

, Volume 98, Issue 4, pp 195–202 | Cite as

The Influence of Solvent on the Acidity and Activity of Supported Sulfonic Acid Catalysts

  • S. Koujout
  • D.R. Brown
Article

Abstract

The acid strengths and catalytic activities of sulfonic acids supported on polystyrene resins and ordered mesoporous HMS and SBA-15 silicas are compared. Acid strengths are measured by acid–base titration calorimetry in terms of the molar enthalpies of neutralisation with either NaOH or n-butylamine in water, acetonitrile and cyclohexane. Catalytic activities (turnover numbers) are reported in model reactions in water, 1,2-dichlorobenzene and anisole, and compared with acid strengths. In water, sulfonated resins are both stronger acids and more active catalysts than sulfonated silicas. Catalytic activities in water correlate well with these measured acid strengths. In acetonitrile the order of acid strengths is reversed and the sulfonated silicas are the stronger acids. Catalytic measurements in 1,2-dichlorobenzene, a similar dipolar aprotic solvent, show the same reversed order of activities. In the non-polar solvent cyclohexane (where only macroporous sulfonated resins show measurable acidity) the sulfonated silicas are again the stronger acids but by a larger margin. Catalytic activities in anisole, which is also only very weakly solvating towards sulfonic acid groups, show a similar trend. The results illustrate the role of the solvent in controlling the acid strength of solid acid catalysts, and the importance of taking this into account when designing acid catalysts for liquid phase processes.

acid catalysis solid acid ion-exchange resin sulfonated silica mesoporous molecular sieve sulfonated polystyrene titration calorimetry enthalpy of neutralisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Chakrabarti and M. M. Sharma, React. Polym. 20 (1993) 1.Google Scholar
  2. [2]
    B. Corain, M. Zecca and K. Jerabek, J. Molec. Catal. A:Chem. 177 (2001) 3.Google Scholar
  3. [3]
    J. Tejero, F. Cunill, M. Iborra, J. F. Izquierdo and C. Fite, J. Mol. Catal. A:Chem. 182 (2002) 541.Google Scholar
  4. [4]
    W. M. Van Rhijn, D. E. DeVos, B. F. Sels, W. D. Bossaert and P. A. Jacos, J. Chem. Soc., Chem. Commun. 182 (1998) 317.Google Scholar
  5. [5]
    W. D. Bossaert, D. E. DeVos, W. M. Van Rhijn, J. Bullen, P. J. Grobet and P. A. Jacobs, J. Catal. 182 (1999) 156.Google Scholar
  6. [6]
    D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka and G. D. Stucky, Chem. Mater. 12 (2000) 2448.Google Scholar
  7. [7]
    S. Koujout and D. R. Brown in: Catalysis in Application Application, eds. S. D. Jackson, J. S. J. Hargreaves and D. Lennon (Royal Society of Chemistry, London, 2003)pp. 178–185.Google Scholar
  8. [8]
    S. Koujout, B. M. Kiernan, D. R. Brown, H. G. M. Edwards, J. A. Dale and S. Plant, Catal. Lett. 85 (2003) 33.Google Scholar
  9. [9]
    M. Hart, G. Fuller, D. R. Brown, C. Park, M. A. Keane, J. A. Dale, C. M. Fougret and R. W. Cockman, Catal. Lett. 72 (2001) 135.Google Scholar
  10. [10]
    C. Buttersack, H Widdeske and J. Klein, React. Polym. 5 (1987) 181.Google Scholar
  11. [11]
    M. Hart, G. Fuller, D. R. Brown, J. A Dale and S. Plant, J. Mol. Catal. A:Chem. 182 –183 (2002) 439.Google Scholar
  12. [12]
    F. Ancilloti, M. M. Mauri and E. Pescaraollo, J. Catal. 46 (1977) 49.Google Scholar
  13. [13]
    K. Jerabek and K. Setinek, J. Mol. Catal. 39 (1987) 161.Google Scholar
  14. [14]
    J. H. Ahn, S. K. Ihn and K. S. Park, J. Catal. 113 (1988) 434.Google Scholar
  15. [15]
    P. T. Tanev and T. J. Pinnavaia, Science 267 (1995) 865.Google Scholar
  16. [16]
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science 279 (1998) 548.Google Scholar
  17. [17]
    E. M. Arnett, R. A. Haaksma, B. Chawla and M. H. Healy, J. Am. Chem. Soc. 108 (1986) 4888.Google Scholar
  18. [18]
    E. M. Arnett, T. Absan and K. Amarnath, J. Am. Chem. Soc. 113 (1991) 6858.Google Scholar
  19. [19]
    R. S. Drago and N. Kob, J. Phys. Chem. B 101 (1997) 3360.Google Scholar
  20. [20]
    C. Chronister and R. Drago, J. Am. Chem. Soc. 115 (1993) 4793.Google Scholar
  21. [22]
    C. E. Harland, Ion Exchange:Theory and Practice 2nd Ed, (Royal Society of Chemistry, London, 1994).Google Scholar
  22. [23]
    M. J. Climent, A. Corma, S. Iborra and M. C. Navarro, J. Catal. 161 (1996) 783.Google Scholar
  23. [24]
    Y. Tanaka, N. Sawamura and M. Iwamoto, Tet. Lett. 39 (1998) 9457.Google Scholar
  24. [25]
    J. Deutsch, V. Quashning, E. Kemnitz, A. Auroux, H. Ehwald and H. Lieske, Top. Catal. 13 (2000) 281.Google Scholar
  25. [26]
    R. Thornton and B. C. Gates, J. Catal. 34 (1974) 275.Google Scholar
  26. [27]
    M. D. Grieser, A. D. Wilks and D. J. Pietrzyk, Anal. Chem. 44 (1972) 671.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • S. Koujout
    • 1
  • D.R. Brown
    • 1
  1. 1.Department of Chemical and Biological SciencesUniversity of HuddersfieldHuddersfield, HD1 3DHUK

Personalised recommendations