Advertisement

Catalysis Letters

, Volume 98, Issue 1, pp 29–36 | Cite as

Synthesis and Characterization of Dendrimer-Templated Mesoporous Oxidation Catalysts

  • Matt C. Rogers
  • Bamidele Adisa
  • David A. Bruce
Article

Abstract

We report here the use of 4th and 5th generation dendrimers poly(propylene)imine (CU-D32 and CU-D64) as templating agents for the synthesis of mesoporous titanosilicate and vanadosilicate oxidation catalysts via solgel techniques. The physical properties of these mesoporous materials were characterized by TGA, BET, PXD and SEM/EDX analyses and these showed that the transition metals are evenly distributed throughout these silicates, which have interconnected spherical pores (approx. 12Å in diameter) and high surface areas of about 650m2g−1. Kinetic studies showed that all transition metal-doped catalysts were highly selective at oxidizing cyclohexene to the corresponding epoxide. Additionally, CU-D64-templated catalysts were more catalytically active for cyclohexene epoxidation than CU-D32-templated catalysts as a result of differences in pore size. All CU-D64-templated catalysts exhibited epoxidation catalytic activity comparable to that of titanium doped MCM-41 materials.

dendrimer mesoporous oxidation catalyst sol–gel vanadosilicate titanosilicate cyclohexene epoxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1 ]
    I. W. C. E. Arends and R. A. Sheldon, Appl. Catal. A Gen. 212 (2001) 175.Google Scholar
  2. [2 ]
    R. A. Sheldon and J. Dakka, Catal. Today 19 (1994) 215.Google Scholar
  3. [3 ]
    R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidations of Organic Compounds, (Academic Press, New York, 1981).Google Scholar
  4. [4 ]
    R. A. Sheldon, Chemtech (1991) 566.Google Scholar
  5. [5 ]
    G. Centi and M. Misono, Catal. Today 41 (1998) 287.Google Scholar
  6. [6 ]
    J. S. Rafelt and J. H. Clark, Catal. Today 57 (2000) 33.Google Scholar
  7. [7 ]
    M. G. Clerici, Topics Catal. 13 (2000) 373.Google Scholar
  8. [8 ]
    N. N. Trukhan, V. N. Romannikov, A. N. Shmakov, M. P. Vanina, E. A. Paukshtis, V. I. Bukhtiyarov, V. V. Kriventsov, I. Yu. Danilov and O. A. Kholdeeva, Micropor. Mesopor. Mat. 59 (2192) 73.Google Scholar
  9. [9 ]
    A. Tuel and L. G. Hubert-Pfalzgraf, J. Catal. 217 (2192) 343.Google Scholar
  10. [10 ]
    P. T. Tanev, M. Chibwe and T. Pinnavaia, Nature 368 (1994) 321.PubMedGoogle Scholar
  11. [11 ]
    L. Y. Chen, G. K. Chuah and S. Jaenicke, Catal. Lett. 50 (1998) 107.Google Scholar
  12. [12 ]
    A. Corma, Chem. Rev. 97 (1997) 2373.PubMedGoogle Scholar
  13. [13 ]
    A. Sayari, Chem. Mater. 8 (1996) 1840.Google Scholar
  14. [14 ]
    J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Seonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc. 114 (1992) 10834.Google Scholar
  15. [15 ]
    W. Zhang, M. Froba, J. Wang, P. T. Tanev, J. Wong and T. J. Pinnavaia, J. Am. Chem. Soc. 118 (1996) 9164.Google Scholar
  16. [16 ]
    K. A. Koyano and T. Tatsumi, Micropor. Mater. 10 (1997) 259.Google Scholar
  17. [17 ]
    A. Vinu, J. Dedecek, V. Murugesan and M. Hartmann, Chem. Mater. 14 (2002) 2433.Google Scholar
  18. [18 ]
    L. X. Dai, K. Tabata, E. Suzuki and T. Tatsumi, Chem. Mater. 13 (2001) 208.Google Scholar
  19. [19 ]
    L. Y. Chen, G. K. Chuah and S. Jaenicke, Catal. Lett. 50 (1998) 107.Google Scholar
  20. [20 ]
    R. D. Oldroyd, G. Sankar, J. M. Thomas and D. Özkaya, J. Phys. Chem. B 102 (1998) 1849.Google Scholar
  21. [21 ]
    C. Howard, The Synthesis and Catalytic Properties of Novel Heterogeneous Oxidation Catalysts. PhD Dissertation (Clemson University, Clemson, SC, 2000).Google Scholar
  22. [22 ]
    T. Blasco, A. Corma, M. T. Navarro and J. P. Pariente, J. Catal. 156 (1995) 65.Google Scholar
  23. [23 ]
    G. Tasi, I. Pálinkó, Ñ. Molnár and I. Hannus, J. Mol. Struct. (THEOCHEM) 666 -667 (2192) 69.Google Scholar
  24. [24 ]
    P. B. Weisz, Pure Appl. Chem. 52 (1980) 2091.Google Scholar
  25. [25 ]
    P. B. Weisz, ACS Symp. Ser. 738 (1999) 18.Google Scholar
  26. [26 ]
    S. M. Csicsery, Pure Appl. Chem. 58 (1986) 841.Google Scholar
  27. [27 ]
    S. M. Csicsery, Stud. Surf. Sci. Catal. 94 (1995) 1.Google Scholar
  28. [28 ]
    G. Larsen, E. Lotero and M. Marquez, J. Phys. Chem. B. [vn104] (2000) 4840.Google Scholar
  29. [29 ]
    G. Larsen, E. Lotero and M. Marquez, J. Mater. Res. 15 (2000) 1842.Google Scholar
  30. [30 ]
    G. Larsen, E. Lotero and M. Marquez, Chem. Mater. 12 (2000) 1513.Google Scholar
  31. [31 ]
    G. Larsen and R. Velarde-Ortiz, Chem. Mater. 14 (2002) 858.Google Scholar
  32. [32 ]
    A. Gong, Y. Chen, X. Zhang, H. Liu, C. Chen and F. Xi, J. Appl. Polym. Sci. 78 (2000) 2186.Google Scholar
  33. [33 ]
    G. Horvath and K. Kawazoe, J. Chem. Eng. Jpn. 16 (1983) 470.Google Scholar
  34. [34 ]
    P. Wu and T. Tatsumi, Chem. Mater. 14 (2002) 1657.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Matt C. Rogers
    • 1
  • Bamidele Adisa
    • 1
  • David A. Bruce
    • 1
  1. 1.Department of Chemical EngineeringClemson UniversityUSA

Personalised recommendations