Catalysis Letters

, Volume 100, Issue 3–4, pp 115–124 | Cite as

Fabrication of platinum nanoparticles and nanowires by electron beam lithography (EBL) and nanoimprint lithography (NIL): comparison of ethylene hydrogenation kinetics

  • A. M. Contreras
  • J. Grunes
  • X. -M. Yan
  • A. Liddle
  • G. A. Somorjai

Electron beam lithography (EBL), size reduction lithography (SRL), and nanoimprint lithography (NIL) have been utilized to produce platinum nanoparticles and nanowires in the 20–60-nm size range on oxide films (SiO2 and Al2O3) deposited onto silicon wafers. A combination of characterization techniques (SEM, AFM, XPS, AES) has been used to determine size, spatial arrangement and cleanliness of these fabricated catalysts. Ethylene hydrogenation reaction studies have been carried out over these fabricated catalysts and have revealed major differences in turnover rates and activation energies of the different nanostructures when clean and when poisoned with carbon monoxide. The oxide-metal interfaces are implicated as important reaction sites that remain active when the metal sites are poisoned by adsorbed carbon monoxide.


ethylene hydrogenation CO poisoning electron beam lithography size reduction lithography nanoimprint lithography platinum nanoparticles platinum nanowires 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank Dr Ji Zhu of Lam Research Corporation, Dr E.A. Anderson of Lawrence Berkeley National Laboratory, Professor J. Bokor, and Professor Y.K. Choi both of UC Berkeley EECS Department, for all of their contributions to this work. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical and Materials Sciences Divisions, of the US Department of Energy under Contract No. DE-AC03-76SF00098.


  1. [1]
    Salmeron, M., Somorjai, G.A. 1981J. Phys. Chem.853835Google Scholar
  2. [2]
    Salmeron, M., Somorjai, G.A. 1982J. Phys. Chem.86341Google Scholar
  3. [3]
    Davis, S.M., Somorjai, G.A. 1983J. Phys. Chem.871545Google Scholar
  4. [4]
    Su, X., Cremer, P.S., Shen, Y.R., Somorjai, G.A. 1997J. Am. Chem. Soc.1193994Google Scholar
  5. [5]
    McCrea, K.R., Parker, J.S., Somorjai, G.A. 2002J. Phys. Chem. B10610854Google Scholar
  6. [6]
    Horiuti, J., Polanyi, M. 1934Trans. Faraday Soc.301164Google Scholar
  7. [7]
    Zaera, F., Somorjai, G.A. 1983J. Catal.84375Google Scholar
  8. [8]
    Zaera, F., Somorjai, G.A. 1986Langmuir2686Google Scholar
  9. [9]
    Zaera, F., Somorjai, G.A. 1985J. Phys. Chem.893211Google Scholar
  10. [10]
    Godbey, D., Zaera, F., Yeates, R., Somorjai, G.A. 1986Surf. Sci.167150Google Scholar
  11. [11]
    Backman, A.L., Masel, R.I. 1988J. Vac. Sci. Technol.61137Google Scholar
  12. [12]
    Backman, A.L., Masel, R.I. 1991J. Vac. Sci. Technol.93Google Scholar
  13. [13]
    Cremer, P., Stanners, C., Niemantsverdriet, J.W., Shen, Y.R., Somorjai, G.A. 1995Surf. Sci.328111Google Scholar
  14. [14]
    Ohtani, T., Kubota, J., Kondo, J.N., Hirose, C., Domen, K. 1999J. Phys. Chem. B1034562Google Scholar
  15. [15]
    Deng, R., Herceg, E., Trenary, M. 2004Surf. Sci.560L195Google Scholar
  16. [16]
    Tang, D.C., Hwang, K.S., Salmeron, M., Somorjai, G.A. 2004J. Phys. Chem. B10813300Google Scholar
  17. [17]
    Eppler, A.S., Zhu, J., Anderson, E.A., Somorjai, G.A. 2000Top. Catal.1333Google Scholar
  18. [18]
    Zhu, J., Somorjai, G.A. 2001Nano. Lett.18Google Scholar
  19. [19]
    Ting, C.H., Liauw, K.L. 1983J. Vac. Sci. Technol. B11225Google Scholar
  20. [20]
    Rishton, S.A., Kern, D.P. 1987J. Vac. Sci. Technol. B5135Google Scholar
  21. [21]
    Bohr, M.T. 1996Appl. Surf. Sci.101534Google Scholar
  22. [22]
    Choi, Y.K., Zhu, J., Grunes, J., Bokor, J., Somorjai, G.A. 2003J. Phys. Chem. B1073340Google Scholar
  23. [23]
    Choi, Y.K., Lee, J.S., Zhu, J., Somorjai, G.A., Bokor, J. 2003J. Vac. Sci. Tech. B212951Google Scholar
  24. [24]
    Chou, S.Y., Krauss, P.R., Renstrom, P.J. 1995Appl. Phys. Lett.673114Google Scholar
  25. [25]
    Chou, S.Y., Krauss, P.R., Renstrom, P.J. 1996Science27285Google Scholar
  26. [26]
    Chou, S.Y., Krauss, P.R., Zhang, W., Guo, L.J., Zhuang, L. 1997J. Vac. Sci. Technol. B152897Google Scholar
  27. [27]
    Johnson, L.F., Ingersoll, K.A., Kammlott, G.W. 1979Appl. Phys. Lett.34578Google Scholar
  28. [28]
    Gourgon, C., Tortai, J.H., Lazzarino, F., Perret, C., Micouin, G., Joubert,  O., Landis, S. 2004J. Vac. Sci. Technol. B22602Google Scholar
  29. [29]
    Segal, E., Madon, R.J., Boudart, M.J. 1978Catal.5245Google Scholar
  30. [30]
    Grunes, J., Zhu, J., Anderson, E.A., Somorjai, G.A. 2002J. Phys. Chem. B10611463Google Scholar
  31. [31]
    Zaera, F., Somorjai, G.A. 1984J. Am. Chem. Soc.1062288Google Scholar
  32. [32]
    Hwang, K.S., Yang, M., Zhu, J., Grunes, J., Somorjai, G.A. 2003J. Mol. Catal. A204–205499Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. M. Contreras
    • 1
    • 2
  • J. Grunes
    • 1
    • 2
  • X. -M. Yan
    • 2
  • A. Liddle
    • 2
  • G. A. Somorjai
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials and Chemical Sciences DivisionsLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations