Advertisement

Catalysis Letters

, Volume 99, Issue 1–2, pp 65–71 | Cite as

Nickel-Molybdenum-Tungsten Sulfide catalysts prepared by in situ activation of tri-metallic (Ni-Mo-W) alkylthiomolybdotungstates

  • H. Nava
  • F. Pedraza
  • G. Alonso
Article

Abstract

Unsupported nickel–molybdenum-tungsten sulfide catalysts were prepared from tri-metallic Ni-Mo-W alkyl precursors by in situ activation during the hydrodesulphurization (HDS) of dibenzothiophene (DBT). The tri-metallic Ni-Mo-W precursors were prepared by reaction of tetraalkylammonium thiomolibdotungstates salts, (R4N)4MoWS8 (where R=H, methyl, propyl, butyl, cetyl-trimetyl), with NiCl2 in water at a Ni/Mo(W) molar ratio of 2. These precursors are named Ni/(NH4)4MoWS8, Ni/[N(CH3)4]4MoWS8, Ni/[N(C3H7)4]4MoWS8, Ni/[N(C4H9)4]4MoWS8, Ni/[N(C19H42)4]4MoWS8 to give NiMoW-H, NiMoW-C1, NiMoW-C3, NiMoW-C4 and NiMoW-C C catalysts respectively. These catalysts exhibit a “Swiss-cheese”-like morphology, a wide distribution of specific areas (from 6.9–194.07 m2/g) and high content of carbon (C/Mo = 2.5–8.9). The in situ activation of these tetraalkylammonium thiotrimetallates precursors leads to a mesoporous structure with pore size ranging from 10 to 40 Å and type IV adsorption–desorption isotherms of nitrogen. X-ray diffraction showed that the structure of unsupported nickel–molybdenum-tungsten sulfide catalysts corresponds to a typical structure of 2H-MoS2 poorly crystalline with low-stacked layers. The nature of the alkyl group strongly affects both the specific area and the HDS activity. The catalytic activity is strongly enhanced when using carbon-containing precursors; the NiMoW catalysts prepared by in situ activation present high HDS activity. The lowest specific area of the catalysts was observed for the NiMoW-H sample.

Keywords

tri-metallic precursors in situ activation hydrodesulphurization Ni-Mo-W catalysts. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weisser, O.Landa, S. eds. 1973Sulfide Catalysts: Their Properties and ApplicationsPergamon Press.OxfordGoogle Scholar
  2. Topsoe, H., Clausen, B.S., Massoth, F.E. 1996Catalysis, Science and TechnologyAnderson, J.R.Boudart, M. eds. vol. 11, eds.SpringerBerlinGoogle Scholar
  3. Quian, W., Hachiya, Y., Wang, D., Hirabayashi, K., Ishihara, A., Kabe, T., Okazaki, H., Adachi, M. 2002Applied Catalysis2271928Google Scholar
  4. Hagenbach, G., Courty, P., Delmon, B. 1973J. Catal31264Google Scholar
  5. Candia, R., Claussen, B.S., Topsoe, H. 1982J. Catal77564Google Scholar
  6. S.L. Soled, S. Miseo, R. Krycak, H. Vroman, T. C. Ho, K. Riley, United States Patent 6,299,760 October 9, 2001.Google Scholar
  7. F.L. Plantenga, R. Cefortain, S. Eijsbouts, F. van Houtert (Akzo Nobel Catalysts), S.L. Soled, S. Miseo, R. Krycak, G. Anderson (Exxon Mobil USA), K. Fujita (Nippon Ketjen Co., Ltd.), NEBULA: A Hydroprocessing Catalysts with Breakthrough Activity (2002).Google Scholar
  8. Alonso, G., Berhault , G., Aguilar, A., Collins, V., Ornelas, C., Fuentes, S., Chianelli, R.R. 2002J. Catal208359Google Scholar
  9. Alonso, G., Del Valle, M., Cruz, J., Licea-Claverie, A., Petranovskii, V., Fuentes, S. 2002Catal. Lett.5255Google Scholar
  10. Alonso, G., Berhault, G., Chianelli, R.R. 2001 Inorg. Chem. Acta 316 105Google Scholar
  11. Pan, W. H, Leonowics, M. E., Stiefel, E. I. 1983 Inorg. Chem22 672Google Scholar
  12. Nava, H., Ornelas, C., Aguilar, A., Berhault, G., Fuentes, S., Alonso, G. 2003Catal. Lett86257265Google Scholar
  13. Liang, K.S., Chianelli, R.R., Chien, F.Z., Moss, S.C. 1986J. non-Cryst. Solids79251Google Scholar
  14. Whitehurst, D.D., Isoda, T., Mochida, I. 1998Adv. Catal42345CrossRefGoogle Scholar
  15. Chianelli, R.R., Berhault, G. 1999Catal. Today 53357Google Scholar
  16. Alonso, G., Del Valle, M. , Cruz, J., Licea-Claverie, A., Petranovskii, V., Fuentes, S. 2000Appl.Catal. A: Gen. 19787Google Scholar
  17. Berhault, G., Mehta, A., Pavel, A.C., Yang, J. , Rendon, L., Yácaman, M.J., Cota, L. , Duarte, A., Mehta, A., Chianelli, R.R. 2001J. Catal.1989Google Scholar
  18. Schwartz, V., Teixeira da Silva, V., Oyama, S.T. 2000J. Mol. Chem. A: Chem.163251Google Scholar
  19. Dhandapani, B., St Clair, T., Oyama, S.T. 1998Appl. Catal. A: Gen168219Google Scholar
  20. Maméde, A.S., Giraudon, J.M., Löfberg, A., Leclercq, L., Leclercq, G. 2002Appl. Catal. A: Gen 22773Google Scholar
  21. Daage, M., Chianelli, R.R. 1994J. Catal149414Google Scholar
  22. K. Bijan, S. Roy Morrison, J. Appl. Phys. 67 (3) Feb. 1990Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Departamento de CatálisisCentro de Investigación en Materiales AvanzadosChihuahuaMéxico
  2. 2.Programa de Tratamiento de Crudo MayaInstituto Mexicano del PetróleoMéxico D.F

Personalised recommendations