Cell and Tissue Banking

, Volume 16, Issue 2, pp 171–180 | Cite as

Induced pluripotent stem cells and their implication for regenerative medicine

  • Maria Csobonyeiova
  • Stefan Polak
  • Jan Koller
  • Lubos DanisovicEmail author
Mini Review


In 2006 Yamanaka’s group showed that stem cells with properties similar to embryonic stem cells could be generated from mouse fibroblasts by introducing four genes. These cells were termed induced pluripotent stem cells (iPSCs). Because iPSCs avoid many of ethical concerns associated with the use of embryonic material, they have great potential in cell-based regenerative medicine. They are suitable also for other various purposes, including disease modelling, personalized cell therapy, drug or toxicity screening and basic research. Moreover, in the future, there might become possible to generate organs for human transplantation. Despite these progresses, several studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to immunogenicity of some cells differentiated from iPSCs. Recent methodological improvements are increasing the ease and efficacy of reprogramming, and reducing the genomic modification. However, to minimize or eliminate genetic alternations in the derived iPSC line creation, factor-free human iPSCs are necessary. In this review we discuss recent possibilities of using iPSCs for clinical applications and new advances in field of their reprogramming methods. The main goal of present article was to review the current knowledge about iPSCs and to discuss their potential for regenerative medicine.


Induced pluripotent stem cells Regenerative medicine Gene therapy Reprogramming 



This study was supported by the Grant UK No. 55/2014 and by the Grant of Ministry of Health of the Slovak Republic No. 2012/4-UKBA-4.


  1. Adamkov M, Halasova E, Rajcani J, Bencat M, Vybohova D, Rybarova S, Galbavy S (2011) Relation between expression pattern of p53 and survivin in cutaneous basal cell carcinomas. Med Sci Monit 17(3):74–80CrossRefGoogle Scholar
  2. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702CrossRefPubMedGoogle Scholar
  3. Apostolou E, Hochedlinger K (2011) iPS cells under attack. Nature 474:165–166CrossRefPubMedGoogle Scholar
  4. Bai Q, Desprat R, Klein B, Lemitre JM, De Vos J (2013) Embryonic stem cells or Induced pluripotent stem celles? A DNA integrity perspective. Curr Gene Ther 13(2):93–98CrossRefPubMedCentralPubMedGoogle Scholar
  5. Ben-David U, Benvenisty N (2011) The tumorigenicyty of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277CrossRefPubMedGoogle Scholar
  6. Cai S, Chan YS, Kwok-Yan Shum D (2014) Induced pluripotent stem cells and neurological disease models. Acta Physiol Sinica 66(1):55–66PubMedGoogle Scholar
  7. Cheng F, Ke Q, Chen F, Bing C, Gao Y, Ye CH, Wang D, Zhang L, Lahn BT, Li W, Xiang AP (2012) Protecting against wayward human induced pluripotent stem cells with a suicide gene. Biomaterials 33:3195–3204CrossRefPubMedGoogle Scholar
  8. Cui CH, Rao L, Cheng L, Xiao L (2009) Generation and application of human iPS cells. Chin Sci Bull 54:9–13CrossRefGoogle Scholar
  9. Deng W (2010) Induced pluripotent stem cells: path to new medicines. EMBO Rep 11:161–165CrossRefPubMedCentralPubMedGoogle Scholar
  10. Diekman BO, Christoforou N, Willard VP, Sun H, Sanchez-Adams J, Leong KW, Guilak F (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. PNAS 109:19172–19177CrossRefPubMedCentralPubMedGoogle Scholar
  11. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CHE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into moteor neurons. Science 321:1218–1221CrossRefPubMedGoogle Scholar
  12. Drews K, Jozefczuk J, Prigione A, Adjaye J (2012) Human induced pluripotent stem cells: from mechanisms to clinical applications. J Mol Med 90:735–745CrossRefPubMedGoogle Scholar
  13. Durnaoglu S, Genc S, Genc K (2011) Patient-specific pluripotent StemCells in neurological diseases. Stem Cells Int 2011:1–17CrossRefGoogle Scholar
  14. Ebert AD, Yu J, Rose FF, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280CrossRefPubMedCentralPubMedGoogle Scholar
  15. Federation AJ, Bradner JE, Meissner A (2014) The use of small molecules in somatic-cell reprogramming. Trends Cell Biol 24:179–187CrossRefPubMedCentralPubMedGoogle Scholar
  16. Gallegos TF, Sancho-Martinez I, Belmonte JCI (2013) Advances in cellular reprogramming: moving toward a reprieve from immunogenicity. Immunol Lett 155:14–17CrossRefPubMedGoogle Scholar
  17. González F, Boué S, Belmonte JCI (2011) Methods for making induced pluripotent stem cells: reprogramming á la carte. Nature Rev 12:231–242CrossRefGoogle Scholar
  18. Halasova E, Adamkov M, Matakova T, Vybohova D, Antosova M, Janickova M, Singliar A, Dobrota D, Jakusova V (2013) Expression of Ki-67, Bcl-2, survivin and p53 proteins in patients with pulmonary carcinoma. Adv Exp Med Biol 756:15–21CrossRefPubMedGoogle Scholar
  19. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated form autologus skin. Science 318:1920–1923CrossRefPubMedGoogle Scholar
  20. Hanna J, Markoulaki S, Schorderet P, Carey B, Beard B, Wering M, Creyghton M, Steine E, Cassady J, Foreman R, Lenger Ch, Dausman J, Jaenisch R (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264CrossRefPubMedCentralPubMedGoogle Scholar
  21. Hargus G, Coopera O, Deleidia M, Levya A, Leea K, Marlowa E, Yowa A, Soldnerb F, Hockemeyerb D, Halletta PJ, Osborna T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. PNAS 107:15921–15926CrossRefPubMedCentralPubMedGoogle Scholar
  22. Hou P, Li Y, Zhang X, Liu CH, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654CrossRefPubMedGoogle Scholar
  23. Huang CH, Wu JC (2012) Epigenetic modulation of induced pluripotent stem cells: novel therapies and disease models. Drug Discov Today Dis Models 9(4):e153–e160CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kim D, Kim CH, Moon J, Chung Y, Chang M, Han B, Ko S, Yang E, Cha K, Lanza R, Kim K (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476CrossRefPubMedCentralPubMedGoogle Scholar
  25. Ko JY, Kim KI, Park S, Im GI (2014) In vitro chondorgenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials 35:3571–3581CrossRefPubMedGoogle Scholar
  26. Lenger CH (2010) IPS cell technology in regenerative medicine. Ann N Y Acad Sci 1192:38–40CrossRefGoogle Scholar
  27. Li M, Chen M, Han W, Fu X (2010) How far are induced pluripotent stem cells from the clinic? Ageing Res Rev 9:257–264CrossRefPubMedGoogle Scholar
  28. Lu J, Kong X, Luo Ch, Li KK (2013) Application of epigenome-modifying small molecules in induced pluripotent stem cells. Med Res Rev 33(4):790–822CrossRefPubMedGoogle Scholar
  29. Macarthur CC, Fontes A, Ravinder N, Kuninger D, Kaur J, Bailey M, Taliana A, Vemuri MC, Lieu PT (2012) Generation of human-Induced pluripotent stem cells by a nonintegrating RNA sendai virus vector in feeder-free or xeno-free conditions. Stem Cell Int 2012:1–9CrossRefGoogle Scholar
  30. Masuda S, Wu J, Hishida T, Pandian GN, Sugiyama H, Belmonte JCI (2013) Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. J Cell Biol 5:354–355Google Scholar
  31. Medvedev SP, Shevchenko AI, Zakian SM (2010) Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Naturae 2(2):18–28PubMedCentralPubMedGoogle Scholar
  32. Miyoshi N, Ishii I, Nagano H, Haraguchi N, Laksmi Dewi D, Kano Y, Nishikawa SH, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripotency using mature MicroRNAs. Cell Stem Cell 8(6):633–638CrossRefPubMedGoogle Scholar
  33. Narsinh K, Narsinh KH, Wu JC (2011) Derivation of induced pluripotent stem cells for cardiovascular disease modeling. Circ Res 108:1146–1156CrossRefPubMedGoogle Scholar
  34. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A (2010) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120(5):408–416CrossRefGoogle Scholar
  35. Nie B, Wang H, Laurent T, Ding S (2012) Cellular reprogramming: a small molecule perspective. Curr Opin Cell Biol 24(6):784–792CrossRefPubMedCentralPubMedGoogle Scholar
  36. Nsair A, MacLellan WR (2011) Induced pluripotent stem cell for regenerative cardiovascilar therapies and biomedical discovery. Adv Drug Deliv Rev 63:324–330CrossRefPubMedCentralPubMedGoogle Scholar
  37. Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H, Yamato M, Vacanti CHA (2014) Stimulus- trigger fate conversion of somatic cells into pluripotency. Nature 505:641–647CrossRefPubMedGoogle Scholar
  38. Oh S, Lee CHK, Cho KJ, Lee K, Cho S, Hong S (2012) Technological progress in generation of induced pluripotent stem cells for clinical application. Sci World J 2012:417809CrossRefGoogle Scholar
  39. Okita K, Yamanaka S (2014) Induced pluripotent stem cells. In: Lanza R, Atala A (eds) Essential of stem cells biology, 3rd edn. Oxford, UK, pp 369–379Google Scholar
  40. Okita K, Nakagawa M, Hong HJ, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953CrossRefPubMedGoogle Scholar
  41. Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M (2011) Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29(1):73–78CrossRefPubMedCentralPubMedGoogle Scholar
  42. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146CrossRefPubMedGoogle Scholar
  43. Pouya A, Satarian L, Kiani S, Javan M, Baharvand H (2011) Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination. PLoS ONE 6(11):e27925CrossRefPubMedCentralPubMedGoogle Scholar
  44. Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castellá M, Rio P, Sleep E, Gonzale F, Tiscornia G, Garreta E, Aasen T, Veiga A, Verma IM, Surrallés J, Bueren J, Izpisúa Belmonte JC (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–59CrossRefPubMedCentralPubMedGoogle Scholar
  45. Seifinejad A, Tabebordbar M, Baharvand H, Boyer L, Salakdeh GH (2010) Progress and promise towards safe induced pluripotent stem cells for therapy. Stem Cell Rev. 6(2):297–306CrossRefPubMedGoogle Scholar
  46. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris CH, North PE, Dalton S, Duncan SA (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305CrossRefPubMedCentralPubMedGoogle Scholar
  47. Stadtfeld M, Brennand K, Hochedlinger K (2008) Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 18:890–894CrossRefPubMedCentralPubMedGoogle Scholar
  48. Sugiura M, Kasama Y, Araki R, Hoki Y, Sunayama M, Uda M, Nakamura M, Ando S, Abe M (2014) Induced pluripotent stem cell generation-associated point mutations arise during the initial stages of the conversion of these cells. Stem Cell Reports 2(1):52–63CrossRefPubMedCentralPubMedGoogle Scholar
  49. Takahashi K, Yamanaka S (2013) Induced pluripotent stem cells in medicine and biology. Development 140(12):2457–2461CrossRefPubMedGoogle Scholar
  50. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–972CrossRefPubMedGoogle Scholar
  51. Tanabe K, Takahashi K, Yamanaka S (2014) Induction of pluripotency by defined factors. Proc Jpn Acad Ser B Phys Biol Sci 90(3):83–96CrossRefPubMedCentralPubMedGoogle Scholar
  52. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefPubMedGoogle Scholar
  53. Tsai SY, Clavel C, Kim S, Ang YS, Grisanti L, Lee DF, Kelley K, Rendl M (2010) Oct4 and Klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells 28:221–228PubMedGoogle Scholar
  54. Tsuji O, Miura K, Okada Y, Fujiyoshia K, Mukaino M, Nagoshi N, Kitamura K, Kumagai G, Nishino M, Tomisato S, Higashi H, Nagaih T, Katoha H, Kohda K, Matsuzaki Y, Yuzaki M, Ikedai E, Toyamab Y, Nakamura M, Yamanaka S, Okano H (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. PNAS 107:12704–12709CrossRefPubMedCentralPubMedGoogle Scholar
  55. Vitale AM, Wolvetang E, Mackay-Sim A (2011) Induced pluripotent stem cells: a new technology to study human disease. Int J Biochem Cell Biol 43:843–846CrossRefPubMedGoogle Scholar
  56. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. PNAS 105(15):5856–5866CrossRefPubMedCentralPubMedGoogle Scholar
  57. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41CrossRefPubMedCentralPubMedGoogle Scholar
  58. Zhang Y, Li W, Laurent T, Ding S (2012) Small molecules, big roles: the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci 125:5609–5620CrossRefPubMedCentralPubMedGoogle Scholar
  59. Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–215CrossRefPubMedGoogle Scholar
  60. Zhou Y, Zeng F (2013) Integration-free methods for generating induced pluripotent stem cells. Genomics Proteomics Bioinform 11:284–287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Maria Csobonyeiova
    • 1
  • Stefan Polak
    • 1
  • Jan Koller
    • 2
  • Lubos Danisovic
    • 3
    Email author
  1. 1.Institute of Histology and Embryology, Faculty of MedicineComenius UniversityBratislavaSlovakia
  2. 2.Department of Burns and Reconstructive Surgery, Faculty of Medicine, University HospitalComenius UniversityBratislavaSlovakia
  3. 3.Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of MedicineComenius UniversityBratislavaSlovakia

Personalised recommendations