Cell and Tissue Banking

, Volume 14, Issue 2, pp 195–203 | Cite as

Characterization of a simplified ice-free cryopreservation method for heart valves

  • Agnes J. T. Huber
  • Timo Aberle
  • Martina Schleicher
  • Hans-Peter Wendel
  • Kelvin G. M. Brockbank


The aim of the present study was to characterize the hemocompatibility of ice-free cryopreserved heart valves in anticipation of future human trials. Porcine pulmonary heart valves were infiltrated with either an 83 % cryoprotectant solution followed by rapid cooling and storage at −80 °C or with 10 % DMSO and control rate freezing to −80 °C and storage in vapor phase nitrogen as conventional frozen controls. Cryopreserved leaflets were compared with fresh, decellularized and glutaraldehyde-fixed control valve leaflets using a battery of coagulation protein assays after exposure to human blood. Von Willebrand Factor staining indicated that most of the endothelium was lost during valve processing prior to cryopreservation. Hemocompatibility, employing thrombin/antithrombin-III-complex, polymorphonuclear neutrophil-elastase, beta-thromboglobulin and terminal complement complex SC5b-9, was preserved compared with both fresh and frozen leaflets. Hemocompatibility differences were observed for cryopreserved leaflets versus both decellularized and glutaraldehyde fixed controls. In conclusion, the hemocompatibility results support the use of ice-free cryopreservation as a simplified preservation method because no statistically significant differences in hemocompatibility were observed between the two cryopreservation methods and fresh untreated controls.


Cryopreservation Heart valve Hemocompatibility Endothelium Allograft Storage 



The authors would like to thank Ilka Degenkolbe, Michaela Braun und Doris Armbruster for their excellent technical assistance, and the Slaughterhouse Gärtringen and Mrs. Quindt for providing tissues. This work was supported by the Deutsche Forschungsgemeinschaft (STO359/7-1).

Conflict of interest

Dr. Brockbank is an owner and employee of Cell and Tissue Systems, Inc. No competing financial interests exist for any other authors.


  1. Bayrak A, Tyralla M, Ladhoff J, Schleicher M, Stock UA, Volk HD, Seifert M (2010) Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 31(14):3793–3803PubMedCrossRefGoogle Scholar
  2. Brockbank KG, Carpenter JF, Dawson PE (1992) Effects of storage temperature on viable bioprosthetic heart valves. Cryobiology 29(5):537–542. doi:  10.1016/0011-2240(92)90058-A PubMedCrossRefGoogle Scholar
  3. Brockbank KG, Wright GJ, Yao H, Greene ED, Chen ZZ, Schenke-Layland K (2011) Allogeneic heart valve storage above the glass transition at −80 degrees C. Ann Thorac Surg 91(6):1829–1835PubMedCrossRefGoogle Scholar
  4. Brockbank KG, Schenke-Layland K, Greene ED, Chen Z, Fritze O, Schleicher M, Kaulitz R, Riemann I, Fend F, Albes JM, Stock UA, Lisy M (2012) Ice-free cryopreservation of heart valve allografts: better extracellular matrix preservation in vivo and preclinical results. Cell Tissue Bank. doi: 10.1007/s10561-011-9288-7
  5. Brown JW, Ruzmetov M, Eltayeb O, Rodefeld MD, Turrentine MW (2011) Performance of SynerGraft decellularized pulmonary homograft in patients undergoing a Ross procedure. Ann Thorac Surg 91(2):416–422; discussion 422–413Google Scholar
  6. Burch PT, Kaza AK, Lambert LM, Holubkov R, Shaddy RE, Hawkins JA (2010) Clinical performance of decellularized cryopreserved valved allografts compared with standard allografts in the right ventricular outflow tract. Ann Thorac Surg 90(4):1301–1305; discussion 1306Google Scholar
  7. Campbell LH, Brockbank KGM (2010) Cryopreservation of porcine aortic heart valve leaflet-derived myofibroblasts. Bioprocess Biobank 8:211–217CrossRefGoogle Scholar
  8. da Costa FD, Costa AC, Prestes R, Domanski AC, Balbi EM, Ferreira AD, Lopes SV (2010) The early and midterm function of decellularized aortic valve allografts. Ann Thorac Surg 90(6):1854–1860PubMedCrossRefGoogle Scholar
  9. Forsyth M, MacFarlane DR (1986) Recrystallization revisited. CryoLetters 7(6):367–378Google Scholar
  10. Hopkins RA (2004) Cryopreserved cardiac valves: initial experiences and theories. In: Hopkins RA (ed) Cardiac reconstructions with allograft tissues. Springer, New York, pp 77–84Google Scholar
  11. Huber AJ, Brockbank KG, Riemann I, Schleicher M, Schenke-Layland K, Fritze O, Wendel HP, Stock UA (2012) Preclinical evaluation of ice-free cryopreserved arteries: structural integrity and hemocompatibility. Cells Tissues Organs. doi: 10.1159/000331278
  12. Karow AM (1981) Biophysical and chemical considerations in cryopreservation. In: Karow AM, Pegg DE (eds) Organ preservation for transplantation. Dekker, New York, p 113Google Scholar
  13. Kasimir MT, Rieder E, Seebacher G, Nigisch A, Dekan B, Wolner E, Weigel G, Simon P (2006) Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis 15(2):278–286; discussion 286Google Scholar
  14. Lisy M, Pennecke J, Brockbank KG, Fritze O, Schleicher M, Schenke-Layland K, Kaulitz R, Riemann I, Weber CN, Braun J, Mueller KE, Fend F, Scheunert T, Gruber AD, Albes JM, Huber AJ, Stock UA (2010) The performance of ice-free cryopreserved heart valve allografts in an orthotopic pulmonary sheep model. Biomaterials 31(20):5306–5311PubMedCrossRefGoogle Scholar
  15. Loose R, Markant S, Sievers HH, Bernhard A (1993) Fate of endothelial cells during transport, cryopreservation, and thawing of heart valve allografts. Transplant Proc 25(6):3247–3250PubMedGoogle Scholar
  16. Lupinetti FM, Tsai TT, Kneebone JM, Bove EL (1993) Effect of cryopreservation on the presence of endothelial cells on human valve allografts. J Thorac Cardiovasc Surg 106(5):912–917PubMedGoogle Scholar
  17. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247(3 Pt 1):C125–C142PubMedGoogle Scholar
  18. Navarro FB, Costa FD, Mulinari LA, Pimentel GK, Roderjan JG, Vieira ED, Noronha L, Miyague NI (2010) Evaluation of the biological behavior of decellularized pulmonary homografts: an experimental sheep model. Rev Bras Cir Cardiovasc 25(3):377–387PubMedCrossRefGoogle Scholar
  19. Pearson K, Dock N, Brubaker S (eds) (2008) Standards for tissue banking, 12th edn. American Association of Tissue Banks. McLean, VA, USAGoogle Scholar
  20. Schenke-Layland K, Vasilevski O, Opitz F, Konig K, Riemann I, Halbhuber KJ, Wahlers T, Stock UA (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 143(3):201–208PubMedCrossRefGoogle Scholar
  21. Schenke-Layland K, Madershahian N, Riemann I, Starcher B, Halbhuber KJ, Konig K, Stock UA (2006) Impact of cryopreservation on extracellular matrix structures of heart valve leaflets. Ann Thorac Surg 81(3):918–926PubMedCrossRefGoogle Scholar
  22. Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102(19 Suppl 3):III50–III55Google Scholar
  23. Takkenberg JJ, van Herwerden LA, Eijkemans MJ, Bekkers JA, Bogers AJ (2002) Evolution of allograft aortic valve replacement over 13 years: results of 275 procedures. Eur J Cardiothorac Surg 21(4):683–691; discussion 691Google Scholar
  24. Votteler M, Carvajal Berrio DA, Pudlas M, Walles H, Stock UA, Schenke-Layland K (2011) Raman spectroscopy for the non-contact and non-destructive monitoring of collagen damage within tissues. J Biophotonics 5(1):47–56Google Scholar
  25. Zhou J, Fritze O, Schleicher M, Wendel HP, Schenke-Layland K, Harasztosi C, Hu S, Stock UA (2010) Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31(9):2549–2554PubMedCrossRefGoogle Scholar
  26. Zilla P, Fullard L, Trescony P, Meinhart J, Bezuidenhout D, Gorlitzer M, Human P, von Oppell U (1997) Glutaraldehyde detoxification of aortic wall tissue: a promising perspective for emerging bioprosthetic valve concepts. J Heart Valve Dis 6(5):510–520PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Agnes J. T. Huber
    • 1
  • Timo Aberle
    • 1
  • Martina Schleicher
    • 1
  • Hans-Peter Wendel
    • 1
  • Kelvin G. M. Brockbank
    • 2
    • 3
    • 4
  1. 1.Department of Thoracic, Cardiac and Vascular SurgeryUniversity HospitalTübingenGermany
  2. 2.Cell & Tissue Systems, Inc.North CharlestonUSA
  3. 3.Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUSA
  4. 4.Department of Regenerative Medicine and Cell BiologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations