Skip to main content
Log in

Differential cross-linking and radio-protective effects of genipin on mature bovine and human patella tendons

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Gamma irradiation is a proven sterilization method, but is not widely used on allografts for anterior cruciate ligament reconstruction (e.g., patella tendon) due to radiation-induced decreases in mechanical strength. Addressing this drawback would improve the safety and supply of allografts to meet current and future demand. It was hypothesized that genipin-induced collagen cross-linking would increase the tensile modulus of patella tendon tissue such that 5 MRad gamma irradiation would not reduce the tissue mechanical strength below the original untreated values. Optimized genipin treatment increased the tensile modulus of bovine tendons by ~2.4-fold. After irradiation, genipin treated tissue did not significantly differ from native tissue, proving the hypothesis. Optimized genipin treatment of human tendons increased the tensile modulus by ~1.3-fold. After irradiation, both control and genipin-treated tissues possessed ~50–60% of their native tendon modulus, disproving the hypothesis. These results highlight possible age- and species- dependent effects of genipin cross-linking on tendon tissue. Cross-linking of human allografts may be beneficial only in younger donor tissues. Future research is warranted to better understand the mechanisms and applications of collagen cross-linking for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn JH, Lee YS, Ha HC (2008) Comparison of revision surgery with primary anterior cruciate ligament reconstruction and outcome of revision surgery between different graft materials. Am J Sports Med 36:1889–1895

    Google Scholar 

  • Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M, Kinner B, Englert C, Ruszczak Z, Mehrl R, Mueller R (2004) Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 25:2831–2841

    Article  PubMed  CAS  Google Scholar 

  • Avila MY, Navia JL (2010) Effect of genipin collagen crosslinking on porcine corneas. J Cataract Refract Surg 36:659–664

    Article  PubMed  Google Scholar 

  • Barbour SA, King W (2003) The safe and effective use of allograft tissue–an update. Am J Sports Med 31:791–797

    PubMed  Google Scholar 

  • Basso O, Johnson DP, Amis AA (2001) The anatomy of the patellar tendon. Knee Surg Sports Traumatol Arthrosc 9:2–5

    Article  PubMed  CAS  Google Scholar 

  • Beasley LS, Weiland DE, Vidal AF, Chhabra A, Herzka AS, Feng MT, West RV (2005) Anterior cruciate ligament reconstruction: a literature review of the anatomy, biomechanics, surgical considerations, and clinical outcomes. Oper Tech Orthop 15:5–19

    Article  Google Scholar 

  • Brown JR, Trojian TH (2004) Anterior and posterior cruciate ligament injuries. Prim Care 31:925–956

    Article  PubMed  Google Scholar 

  • CDC (2010) 1988–2008 No leisure-time physical activity trend chart. In: U.S. physical activity statistics: centers for disease control and prevention (US). Content updated February 2, 2010; http://www.cdc.gov/nccdphp/dnpa/physical/stats/leisure_time.htm. Accessed 13 Feb 2012

  • Chandrashekar N, Hashemi J, Slauterbeck J, Beynnon BD (2008) Low-load behaviour of the patellar tendon graft and its relevance to the biomechanics of the reconstructed knee. Clin Biomech (Bristol, Avon) 23:918–925

    Article  Google Scholar 

  • Chen YS, Chang JY, Cheng CY, Tsai FJ, Yao CH, Liu BS (2005) An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials 26:3911–3918

    Article  PubMed  CAS  Google Scholar 

  • Clemmer J, Liao J, Davis D, Horstemeyer MF, Williams LN (2010) A mechanistic study for strain rate sensitivity of rabbit patellar tendon. J Biomech 43:2785–2791

    Article  PubMed  Google Scholar 

  • Cole DW, Ginn TA, Chen GJ, Smith BP, Curl WW, Martin DF, Poehling GG (2005) Cost comparison of anterior cruciate ligament reconstruction: autograft versus allograft. Arthroscopy 21:786–790

    Article  PubMed  Google Scholar 

  • Crews DE (2003) Human senescence: evolutionary and biocultural perspectives. Cambridge University Press, Cambridge, p 8

    Book  Google Scholar 

  • Derwin KA, Soslowsky LJ, Green WD, Elder SH (1994) A new optical system for the determination of deformations and strains: calibration characteristics and experimental results. J Biomech 27:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Falconiero RP, DiStefano VJ, Cook TM (1998) Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans. Arthroscopy 14:197–205

    Article  PubMed  CAS  Google Scholar 

  • Farndale RW, Sayers CA, Barrett AJ (1982) A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res 9:247–248

    Article  PubMed  CAS  Google Scholar 

  • Ferretti M, Marra KG, Kobayashi K, Defail AJ, Chu CR (2006) Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Eng 12:2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Fideler BM, Vangsness CT Jr, Lu B, Orlando C, Moore T (1995) Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 23:643–646

    Article  PubMed  CAS  Google Scholar 

  • Gibb JA (1993) Sociality, time and space in a sparse population of rabbits (oryctolagus cuniculus). J Zoology 229:581–607

    Article  Google Scholar 

  • Gibbons MJ, Butler DL, Grood ES, Bylski-Austrow DI, Levy MS, Noyes FR (1991) Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts. J Orthop Res 9:209–218

    Article  PubMed  CAS  Google Scholar 

  • Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557

    PubMed  CAS  Google Scholar 

  • Haraldsson BT, Aagaard P, Krogsgaard M, Alkjaer T, Kjaer M, Magnusson SP (2005) Region-specific mechanical properties of the human patella tendon. J Appl Physiol 98:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Hirshman HP, Daniel DM, Miyasaka KC (1990) The fate of unoperated knee ligament injuries. In: Daniel DM, Akeson WH, O’Connor JJ (eds) Knee ligaments: structure, function, injury and repair. Raven, New York, pp 481–503

    Google Scholar 

  • Huang-Lee LL, Cheung DT, Nimni ME (1990) Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J Biomed Mater Res 24:1185–1201

    Article  PubMed  CAS  Google Scholar 

  • Jones KG (1963) Reconstruction of the anterior cruciate ligament. A technique using the central one-third of the patellar ligament. J Bone Joint Surg Am 45:925–932

    PubMed  CAS  Google Scholar 

  • Koo HJ, Song YS, Kim HJ, Lee YH, Hong SM, Kim SJ, Kim BC, Jin C, Lim CJ, Park EH (2004) Antiinflammatory effects of genipin, an active principle of gardenia. Eur J Pharmacol 495:201–208

    Article  PubMed  CAS  Google Scholar 

  • Krych AJ, Jackson JD, Hoskin TL, Dahm DL (2008) A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy 24:292–298

    Article  PubMed  Google Scholar 

  • LaPrade RF, Burnett QM 2nd (1994) Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 22:198–202 (discussion 203)

    Article  PubMed  CAS  Google Scholar 

  • Lima EG, Tai T, DeFail AJ, Marra KG, Ateshian GA, Hung CT (2007) The use of genipin as a cross-linker to enhance the mechanical properties of tissue-engineered cartilage constructs. Trans Orthop Res 32:351

    Google Scholar 

  • Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35:1756–1769

    Article  PubMed  Google Scholar 

  • Miyasaka KC, Daniel DM, Stone ML, Hirshman P (1991) The incidence of knee ligament injuries in the general population. Am J Knee Surg 4:3–8

    Google Scholar 

  • Moriguchi T, Fujimoto D (1978) Age-related changes in the content of the collagen crosslink, pyridinoline. J Biochem 84:933–935

    PubMed  CAS  Google Scholar 

  • Nakamura N, Horibe S, Sasaki S, Kitaguchi T, Tagami M, Mitsuoka T, Toritsuka Y, Hamada M, Shino K (2002) Evaluation of active knee flexion and hamstring strength after anterior cruciate ligament reconstruction using hamstring tendons. Arthroscopy 18:598–602

    Article  PubMed  Google Scholar 

  • National Sporting Goods Association (2010) Ten-year history of sports participation. http://www.nsga.org/i4a/pages/index.cfm?pageid=3479. Accessed 13 Feb 2012

  • Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    PubMed  CAS  Google Scholar 

  • Olson EJ, Harner CD, Fu FH, Silbey MB (1992) Clinical use of fresh, frozen soft tissue allografts. Orthopedics 15:1225–1232

    PubMed  CAS  Google Scholar 

  • Paik Y, Lee C, Cho M, Hahn T (2001) Physical stability of the blue pigments formed from geniposide of gardenia fruits: effects of pH, temperature, and light. J Agric Food Chem 49:430–432

    Article  PubMed  CAS  Google Scholar 

  • Pruss A, Kao M, Gohs U, Koscielny J, von Versen R, Pauli G (2002) Effect of gamma irradiation on human cortical bone transplants contaminated with enveloped and non-enveloped viruses. Biologicals 30:125–133

    Article  PubMed  Google Scholar 

  • Reddy GK, Enwemeka CS (1996) A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem 29:225–229

    Article  PubMed  CAS  Google Scholar 

  • Reeves ND, Maganaris CN, Narici MV (2003) Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol 548:971–981

    Article  PubMed  CAS  Google Scholar 

  • Sachs RA, Daniel DM, Stone ML, Garfein RF (1989) Patellofemoral problems after anterior cruciate ligament reconstruction. Am J Sports Med 17:760–765

    Article  PubMed  CAS  Google Scholar 

  • Salehpour A, Butler DL, Proch FS, Schwartz HE, Feder SM, Doxey CM, Ratcliffe A (1995) Dose-dependent response of gamma irradiation on mechanical properties and related biochemical composition of goat bone-patellar tendon-bone allografts. J Orthop Res 13:898–906

    Article  PubMed  CAS  Google Scholar 

  • Seto A, Gatt CJ Jr, Dunn MG (2009) Improved tendon radioprotection by combined cross-linking and free radical scavenging. Clin Orthop Relat Res 467:2994–3001

    Article  PubMed  Google Scholar 

  • Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 21:535–539

    Article  PubMed  CAS  Google Scholar 

  • Staubli HU, Schatzmann L, Brunner P, Rincon L, Nolte LP (1999) Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 27:27–34

    PubMed  CAS  Google Scholar 

  • Sung HW, Huang RN, Huang LL, Tsai CC (1999) In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J Biomater Sci Polym Ed 10:63–78

    Article  PubMed  CAS  Google Scholar 

  • Sung HW, Chang Y, Liang IL, Chang WH, Chen YC (2000) Fixation of biological tissues with a naturally occurring crosslinking agent: fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res 52:77–87

    Article  PubMed  CAS  Google Scholar 

  • Sung HW, Chang WH, Ma CY, Lee MH (2003) Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A 64:427–438

    Article  PubMed  Google Scholar 

  • Tuite DJ, Renstrom PA, O’Brien M (1997) The aging tendon. Scand J Med Sci Sports 7:72–77

    Article  PubMed  CAS  Google Scholar 

  • Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JW, Lafeber FP, TeKoppele JM (2002) Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 46:114–123

    Article  PubMed  CAS  Google Scholar 

  • Vogel HG (1991) Species differences of elastic and collagenous tissue–influence of maturation and age. Mech Ageing Dev 57:15–24

    Article  PubMed  CAS  Google Scholar 

  • Weisbroth SH (1974) Neoplastic diseases. In: Weisbroth SH, Flatt RE, Kraus AL (eds) The biology of the laboratory rabbit. Academic Press, New York, p 333

    Google Scholar 

  • Yamazaki M, Sakura N, Chiba K, Mohri T (2001) Prevention of the neurotoxicity of the amyloid beta protein by genipin. Biol Pharm Bull 24:1454–1455

    Article  PubMed  CAS  Google Scholar 

  • Yerramalli CS, Chou AI, Miller GJ, Nicoll SB, Chin KR, Elliott DM (2007) The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomech Model Mechanobiol 6:13–20

    Article  PubMed  CAS  Google Scholar 

  • Yin C, Wayne JS, Jiranek WA, Zuelzer WA (1997) Biochemical and molecular homogeneity in the patellar tendon of the immature pig. J Orthop Res 15:712–718

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Garrett WE (2007) Mechanisms of non-contact ACL injuries. Br J Sports Med 41(Suppl 1):i47–i51

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the NIH via apost-doctoral training award (TL1RR024998—KW Ng) and facilities grants for the Hospital for Special Surgery (Core Center AR046121, Research Facilities Improvement Program C06-RR12538-01). Special thanks to Dr. Jo Hannafin, Prof. Clark T. Hung (Columbia University, New York, NY), and Prof. Steven B. Nicoll (City College of New York, New York, NY) for their scientific and clinical advice in data analysis and study design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne A. Maher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, K.W., Wanivenhaus, F., Chen, T. et al. Differential cross-linking and radio-protective effects of genipin on mature bovine and human patella tendons. Cell Tissue Bank 14, 21–32 (2013). https://doi.org/10.1007/s10561-012-9295-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-012-9295-3

Keywords

Navigation