Advertisement

Cell and Tissue Banking

, Volume 13, Issue 4, pp 529–536 | Cite as

Remodeling of heat-treated cortical bone allografts for posterior lumbar interbody fusion: serial 10-year follow-up

  • Koichi MuramatsuEmail author
  • Yudo Hachiya
  • Hiroyuki Izawa
  • Harumoto Yamada
Article

Abstract

We have selected heat-treated bone allografts as the graft material since the Tokai Bone Bank, the first regional bone bank in Japan, was established in 1992. In this study, we examined changes in bone mineral density (BMD), and morphology observed by magnetic resonance imaging (MRI), and histological findings of bone grafts in cases followed up for 7–10 years after bone grafting to grasp the remodeling of heat-treated cortical bone allografts for posterior lumber interbody fusion (PLIF). BMD of bone grafts was reduced by half at 10 years after grafting. MRI revealed that bone grafts were indistinguishable initially in only 22.2% of cases, whereas after a lengthy period of 10 years distinguishable in many cases. Histologically, new bone formation at the graft-host interface was observed earlier, at 1 year after grafting, than that at the periphery of canals in the specimens. The laminated structure of the cortical bone eroded over time, and fragmented bone trabeculae were observed in the specimens at 8 years or longer after grafting, though necrotic bone still remained in some sites.

Keywords

Bone allograft Posterior lumber interbody fusion Remodeling Heat treatment Bone mineral density Magnetic resonance imaging 

Notes

Acknowledgments

The authors wish to thank Dr. Hidezo Yoshizawa, an emeritus professor, Department of Orthopaedic Surgery, Fujita Health University, School of Medicine, for giving us opportunity of this study, and wish to thank Dr. John Cuckler for his help in editing.

References

  1. Brantigan JW, McAfee PC, Cunningham BW, Wang H, Orbegoso CM (1994) Interbody lumber fusion using a carbon fiber cage implant versus allograft bone: an investigational study in the Spanish goat. Spine 19:1436–1444PubMedCrossRefGoogle Scholar
  2. Burchardt H, Enneking WF (1978) Transplantation of bone. Surg Clin North Am 58:403–427PubMedGoogle Scholar
  3. Buttermann GR, Glazer PA, Bradford DS (1996) The use of bone allograft in the spine. Clin Orthop 324:75–85PubMedCrossRefGoogle Scholar
  4. Cloward RB (1985) Posterior lumber interbody fusion updated. Clin Orthop 193:16–19PubMedGoogle Scholar
  5. Delloye C, Verhelpen M, d’Hemricourt J, Govaerts B, Bourgois R (1992) Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects. Clin Orthop 282:273–292PubMedGoogle Scholar
  6. Delloye C, Simon P, Nyssen-Behets C, Banse X, Bresler F, Schmitt D (2002) Perforations of cortical bone allografts improve their incorporation. Clin Orthop 396:240–247PubMedCrossRefGoogle Scholar
  7. Enneking WF, Campanacci DA (2001) Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am 83:971–986PubMedGoogle Scholar
  8. Goldberg VM, Stevenson S (1987) Natural history of autografts and allografts. Clin Orthop 225:7–16PubMedGoogle Scholar
  9. Goldberg VM, Stevenson S (1993) The biology of bone grafts. Sem Arthroplasty 4:58–63Google Scholar
  10. Gouin F, Passuti N, Verriele V, Delecrin J, Bainvel JV (1996) Histological features of large bone allografts. J Bone Joint Surg Br 78:38–41PubMedGoogle Scholar
  11. Hachiya Y, Sakai T, Narita Y, Izawa H, Iwata H, Yoshizawa H, Hachiya K, Morita C (1999) Status of bone bank in Japan. Transpl Proc 31:2032–2035CrossRefGoogle Scholar
  12. Hofmann A, Konrad L, Hessmann MH, Küchle R, Korner J, Rompe JD, Rommens PM (2005) The influence of bone allograft processing on osteoblast attachment and function. J Orthop Res 23:846–854PubMedCrossRefGoogle Scholar
  13. Hooten JP Jr, Engh CA, Heekin RD, Vinh TN (1996) Structural bulk allografts in acetabular reconstruction: analysis of two grafts retrieved at post-mortem. J Bone Joint Surg Br 78:270–275PubMedGoogle Scholar
  14. Ito T, Sakano S, Sato K, Sugiura H, Iwata H, Murata Y, Seo H (1995) Sensitivity of osteoinductive activity of demineralized and defatted rat femur to temperature and duration of heating. Clin Orthop 316:267–275PubMedGoogle Scholar
  15. Izawa H, Hachiya Y, Kawai T, Muramatsu K, Narita Y, Ban N, Yoshizawa H (2001) The effect of heat-treated human bone morphogenetic protein on clinical implantation. Clin Orthop 390:252–258PubMedCrossRefGoogle Scholar
  16. Johnson AL, Eurell JAC, Schaeffer DJ (1992) Evaluation of canine cortical bone graft remodeling. Vet Surg 21:293–298PubMedCrossRefGoogle Scholar
  17. Liljenqvist U, O’Brien JP, Renton P (1998) Simultaneous combined anterior and posterior lumbar fusion with femoral cortical allograft. Eur Spine J 7:125–131PubMedCrossRefGoogle Scholar
  18. Ma GW (1985) Posterior lumbar interbody fusion with specialized instruments. Clin Orthop 193:57–63PubMedGoogle Scholar
  19. Munting E, Wilmart JF, Wijne A, Hennebert P, Delloye C (1988) Effect of sterilization on osteoinduction. Comparison of five methods in demineralized rat bone. Acta Orthop Scand 59:34–38PubMedCrossRefGoogle Scholar
  20. Muramatsu K, Hachiya Y, Morita C, Izawa H, Yoshizawa H (2000) Clinical and experimental evaluation of frozen allogeneic bone heated at 60°C for 10 hours. J Musculoskeletal Syst 19:1005–1012 (in Japanese)Google Scholar
  21. Nakanishi K, Sato K, Sato T, Takahashi M, Fukaya N, Miura T (1992) Preservation of bone morphogenetic protein in heat-treated bone. J Jpn Orthop Assoc 66:949–955Google Scholar
  22. Nowak T, Klockman U, Hifenhaus J (1992) Inactivation of viruses related to hepatitis C virus by pasteurization in human plasma derivatives. Biologicals 20:83–85PubMedCrossRefGoogle Scholar
  23. O’Brien JP, Holte DC (1992) Simultaneous combined anterior and posterior fusion. Eur Spine J 1:2–6PubMedCrossRefGoogle Scholar
  24. Prolo DJ, Oklund SA, Butcher M (1986) Toward uniformity in evaluating results of lumbar spine operations. A paradigm applied to posterior lumbar interbody fusions. Spine 11:601–606PubMedCrossRefGoogle Scholar
  25. Resnick L, Veren K, Salahuddin SZ, Tondreau S, Markham PD (1986) Stability and inactivation of HTLV-3/LAV under clinical and laboratory environments. JAMA 255:1887–1891PubMedCrossRefGoogle Scholar
  26. Sarwat AM, O’Brien JP, Renton P, Sutcliffe JC (2001) The use of allograft (and avoidance of autograft) in anterior lumber interbody fusion: a critical analysis. Eur Spine J 10:237–241PubMedCrossRefGoogle Scholar
  27. Shikata T, Karasawa T, Abe K (1978) Incomplete inactivation of hepatitis B virus after heat treatment of 60°C for 10 hours. J Infect Dis 138:242–244PubMedCrossRefGoogle Scholar
  28. Stevenson S, Li XQ, Davy DT, Klein L, Goldberg V (1997) Critical biological determinants of incorporation of non-vascularized cortical bone grafts: quantification of a complex process and structure. J Bone Joint Surg Am 79:1–15PubMedCrossRefGoogle Scholar
  29. Urist MR, Silverman BF, Büring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop 53:243–283PubMedGoogle Scholar
  30. Wheeler DL, Enneking WF (2005) Allograft bone decreases in strength in vivo over time. Clin Orthop 435:36–42PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Koichi Muramatsu
    • 1
    Email author
  • Yudo Hachiya
    • 1
  • Hiroyuki Izawa
    • 1
  • Harumoto Yamada
    • 2
  1. 1.Hachiya Orthopaedic HospitalAichiJapan
  2. 2.Department of Orthopaedic Surgery, School of MedicineFujita Health UniversityAichiJapan

Personalised recommendations