Cell and Tissue Banking

, Volume 12, Issue 4, pp 311–318 | Cite as

Postmortem interval effect on RNA and gene expression in human brain tissue

  • Alex C. Birdsill
  • Douglas G. Walker
  • LihFen Lue
  • Lucia I. Sue
  • Thomas G. Beach


Banked tissue is essential to the study of neurological disease but using postmortem tissue introduces a number of possible confounds. Foremost amongst these are factors relating to variation in postmortem interval (PMI). Currently there are conflicting reports on how PMI affects overall RNA integrity, and very few reports of how gene expression is affected by PMI. We analyzed total RNA extracted from frozen cerebellar cortex from 79 deceased human subjects enrolled in the Banner Sun Health Research Institute Brain and Body Donation Program. The PMI, which ranged from 1.5 to 45 h, correlated with overall RNA quality measures including RNA Integrity Number (RIN) (r = −0.34, P = 0.002) and RNA quantitative yield (r = −0.25, P = 0.02). Additionally, we determined the expression of 89 genes using a PCR-based gene expression array (RT2 Profiler™ PCR Array: Human Alzheimer’s Disease; SABiosciences™, Frederick, MD). A greater proportion of genes had decreased rather than increased expression with increasing PMI (65/89 vs. 20/89; P < 0.0001). Of these, transcripts from the genes ADAM9, LPL, PRKCG, and SERPINA3 had significantly decreased expression with increasing PMI (P < 0.01). No individual gene transcripts had significantly increased expression with increasing PMI. In conclusion, it is apparent that RNA degrades progressively with increasing PMI and that measurement of gene expression in brain tissue with longer PMI may give artificially low values. For tissue derived from autopsy, a short PMI optimizes its utility for molecular research.


RIN RNA Postmortem Brain Gene expression Alzheimer’s disease Neurological disease Research Methods 



The Sun Health Research Institute Brain and Body Donation Program is supported by the National Institute on Aging (P30 AG19610 Arizona Alzheimer’s Disease Core Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimer’s Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s Disease Consortium) and the Michael J. Fox Foundation for Parkinson’s Research.


  1. Barrachina M, Castano E, Ferrer I (2006) TaqMan PCR assay in the control of RNA normalization in human post-mortem brain tissue. Neurochem Int 49:276–284PubMedCrossRefGoogle Scholar
  2. Bauer M, Gramlich I, Polzin S, Patzelt D (2003) Quantification of mRNA degradation as possible indicator of postmortem interval—a pilot study. Leg Med (Tokyo) 5:220–227CrossRefGoogle Scholar
  3. Beach TG, Sue LI, Walker DG, Roher AE, Lue L, Vedders L, Connor DJ, Sabbagh MN, Rogers J (2008) The Sun Health Research Institute Brain Donation Program: description and experience, 1987–2007. Cell Tissue Bank 9:229–245PubMedCrossRefGoogle Scholar
  4. Broniscer A, Baker JN, Baker SJ, Chi SN, Geyer R, Morris EB and Gaijar A (2010) Prospective collection of tissue samples at autopsy in children with diffuse intrinsic pontine glioma. Cancer (Epub ahead of print, June 29, 2010Google Scholar
  5. Buesa C, Maes T, Subirada F, Barrachina M, Ferrer I (2004) DNA chip technology in brain banks: confronting a degrading world. J Neuropathol Exp Neurol 63:1003–1014PubMedGoogle Scholar
  6. Burke WJ, O’Malley KL, Chung HD, Harmon SK, Miller JP, Berg L (1991) Effect of pre- and postmortem variables on specific mRNA levels in human brain. Brain Res Mol Brain Res 11:37–41PubMedCrossRefGoogle Scholar
  7. Castensson A, Emilsson L, Preece P, Jazin EE (2000) High-resolution quantification of specific mRNA levels in human brain autopsies and biopsies. Genome Res 10:1219–1229PubMedCrossRefGoogle Scholar
  8. Cummings TJ, Strum JC, Yoon LW, Szymanski MH, Hulette CM (2001) Recovery and expression of messenger RNA from postmortem human brain tissue. Mod Pathol 14:1157–1161PubMedCrossRefGoogle Scholar
  9. Dickson DW (2005) Required techniques and useful molecular markers in the neuropathologic diagnosis of neurodegenerative diseases. Acta Neuropathol (Berl) 109:14–24CrossRefGoogle Scholar
  10. Durrenberger PF, Fernando S, Kashefi SN, Ferrer I, Hauw JJ, Seilhean D, Smith C, Walker R, Al-Sarraj S, Troakes C, Palkovits M, Kasztner M, Huitinga I, Arzberger T, Dexter DT, Kretzschmar H, Reynolds R (2010) Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNet Europe study. J Neuropathol Exp Neurol 69:70–81PubMedCrossRefGoogle Scholar
  11. Eastwood SL, Burnet PW, McDonald B, Clinton J, Harrison PJ (1994) Synaptophysin gene expression in human brain: a quantitative in situ hybridization and immunocytochemical study. Neuroscience 59:881–892PubMedCrossRefGoogle Scholar
  12. Ervin JF, Heinzen EL, Cronin KD, Goldstein D, Szymanski MH, Burke JR, Welsh-Bohmer KA, Hulette CM (2007) Postmortem delay has minimal effect on brain RNA integrity. J Neuropathol Exp Neurol 66:1093–1099PubMedCrossRefGoogle Scholar
  13. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33–39PubMedCrossRefGoogle Scholar
  14. Gilmore JH, Lawler CP, Eaton AM, Mailman RB (1993) Postmortem stability of dopamine D1 receptor mRNA and D1 receptors. Brain Res Mol Brain Res 18:290–296PubMedCrossRefGoogle Scholar
  15. Grunblatt E, Monoranu CM, Apfelbacher M, Keller D, Michel TM, Alafuzoff I, Ferrer I, Al-Saraj S, Keyvani K, Schmitt A, Falkai P, Schittenhelm J, McLean C, Halliday GM, Harper C, Deckert J, Roggendorf W, Riederer P (2009) Tryptophan is a marker of human postmortem brain tissue quality. J Neurochem 110:1400–1408PubMedCrossRefGoogle Scholar
  16. Harrison PJ, Heath PR, Eastwood SL, Burnet PW, McDonald B, Pearson RC (1995) The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 200:151–154PubMedCrossRefGoogle Scholar
  17. Johnson SA, Morgan DG, Finch CE (1986) Extensive postmortem stability of RNA from rat and human brain. J Neurosci Res 16:267–280PubMedCrossRefGoogle Scholar
  18. Johnston NL, Cervenak J, Shore AD, Torrey EF, Yolken RH (1997) Multivariate analysis of RNA levels from postmortem human brains as measured by three different methods of RT-PCR. Stanley Neuropathology Consortium. J Neurosci Methods 77:83–92PubMedCrossRefGoogle Scholar
  19. Kingsbury AE, Foster OJ, Nisbet AP, Cairns N, Bray L, Eve DJ, Lees AJ, Marsden CD (1995) Tissue pH as an indicator of mRNA preservation in human post-mortem brain. Brain Res Mol Brain Res 28:311–318PubMedCrossRefGoogle Scholar
  20. Leonard S, Logel J, Luthman D, Casanova M, Kirch D, Freedman R (1993) Biological stability of mRNA isolated from human postmortem brain collections. Biol Psychiatr 33:456–466CrossRefGoogle Scholar
  21. Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV, Lopez JF, Avelar A, Shokoohi V, Chung T, Mesarwi O, Jones EG, Watson SJ, Akil H, Bunney WE Jr, Myers RM (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 13:609–616PubMedCrossRefGoogle Scholar
  22. Lukiw WJ, Wong L, McLachlan DR (1990) Cytoskeletal messenger RNA stability in human neocortex: studies in normal aging and in Alzheimer’s disease. Int J Neurosci 55:81–88PubMedCrossRefGoogle Scholar
  23. Mathern GW, Pretorius JK, Kornblum HI, Mendoza D, Lozada A, Leite JP, Chimelli L, Born DE, Fried I, Sakamoto AC, Assirati JA, Peacock WJ, Ojemann GA, Adelson PD (1998) Altered hippocampal kainate-receptor mRNA levels in temporal lobe epilepsy patients. Neurobiol Dis 5:151–176PubMedCrossRefGoogle Scholar
  24. Miller CL, Diglisic S, Leister F, Webster M, Yolken RH (2004) Evaluating RNA status for RT-PCR in extracts of postmortem human brain tissue. Biotechniques 36:628–633PubMedGoogle Scholar
  25. Morrison MR, Griffin WS (1981) The isolation and in vitro translation of undegraded messenger RNAs from human postmortem brain. Anal Biochem 113:318–324PubMedCrossRefGoogle Scholar
  26. Pardue S, Zimmerman AL, Morrison-Bogorad M (1994) Selective postmortem degradation of inducible heat shock protein 70 (hsp70) mRNAs in rat brain. Cell Mol Neurobiol 14:341–357PubMedCrossRefGoogle Scholar
  27. Perrett CW, Marchbanks RM, Whatley SA (1988) Characterisation of messenger RNA extracted post-mortem from the brains of schizophrenic, depressed and control subjects. J Neurol Neurosurg Psychiatr 51:325–331PubMedCrossRefGoogle Scholar
  28. Popova T, Mennerich D, Weith A, Quast K (2008) Effect of RNA quality on transcript intensity levels in microarray analysis of human post-mortem brain tissues. BMC Genomics 9:91PubMedCrossRefGoogle Scholar
  29. Preece P, Cairns NJ (2003) Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Brain Res Mol Brain Res 118:60–71PubMedCrossRefGoogle Scholar
  30. Ragsdale DS, Miledi R (1991) Expressional potency of mRNAs encoding receptors and voltage-activated channels in the postmortem rat brain. Proc Natl Acad Sci USA 88:1854–1858PubMedCrossRefGoogle Scholar
  31. Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozo JM, Brun A, Hofman A (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43:250–260PubMedGoogle Scholar
  32. Ross BM, Knowler JT, McCulloch J (1992) On the stability of messenger RNA and ribosomal RNA in the brains of control human subjects and patients with Alzheimer’s disease. J Neurochem 58:1810–1819PubMedCrossRefGoogle Scholar
  33. Sajdel-Sulkowska EM, Majocha RE, Salim M, Zain SB, Marotta CA (1988) The postmortem Alzheimer brain is a source of structurally and functionally intact astrocytic messenger RNA. J Neurosci Methods 23:173–179PubMedCrossRefGoogle Scholar
  34. Schramm M, Falkai P, Tepest R, Schneider-Axmann T, Przkora R, Waha A, Pietsch T, Bonte W, Bayer TA (1999) Stability of RNA transcripts in post-mortem psychiatric brains. J Neural Transm 106:329–335PubMedCrossRefGoogle Scholar
  35. Stan AD, Ghose S, Gao XM, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, Tamminga CA (2006) Human postmortem tissue: what quality markers matter? Brain Res 1123:1–11PubMedCrossRefGoogle Scholar
  36. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. Neurobiol Aging 18: S1–S2Google Scholar
  37. Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J, Overman KM, Atz ME, Myers RM, Jones EG, Watson SJ, Akil H, Bunney WE Jr (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 55:346–352PubMedCrossRefGoogle Scholar
  38. Vanderburg CR, Pfanni R, Tian D, Kiehl T-R, Hsi T, Hedley-Whyte ET, Frosch MP (2005) Factors influencing postmortem RNA integrity in human brain. J Neuropathol Exp Neurol 14:443Google Scholar
  39. Vonsattel JP, Aizawa H, Ge P, DiFiglia M, McKee AC, MacDonald M, Gusella JF, Landwehrmeyer GB, Bird ED, Richardson EP Jr (1995) An improved approach to prepare human brains for research. J Neuropathol Exp Neurol 54:42–56PubMedCrossRefGoogle Scholar
  40. Yasojima K, McGeer EG, McGeer PL (2001) High stability of mRNAs postmortem and protocols for their assessment by RT-PCR. Brain Res Brain Res Protoc 8:212–218PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alex C. Birdsill
    • 1
  • Douglas G. Walker
    • 1
  • LihFen Lue
    • 1
  • Lucia I. Sue
    • 1
  • Thomas G. Beach
    • 1
  1. 1.Civin Laboratory for Neuropathology, Brain and Body Donation ProgramBanner Sun Health Research InstituteSun CityUSA

Personalised recommendations