Advertisement

Cell and Tissue Banking

, Volume 8, Issue 3, pp 195–203 | Cite as

The “in situ” expression of Human Leukocyte Antigen Class I antigens is not altered by cryopreservation in human arterial allografts

  • G. Pasquinelli
  • M. P. Pistillo
  • F. Ricci
  • M. Buzzi
  • P. L. Tazzari
  • L. Foroni
  • C. Manferdini
  • C. Ceccarelli
  • A. Stella
  • R. Conte
Article

Abstract

This study was aimed to establish whether the cryopreservation procedure we currently use in clinics can modify arterial homograft antigenicity. To this purpose, we performed an immunohistochemical study on fresh and cryopreserved human arterial homografts to visualize the expression of HLA class I heavy and light chains “in situ” by using the HC-10 and Namb-1 monoclonal antibodies. Human femoral arteries and thoracic aortas were harvested from 18 heart-beating donors and sampled before and after cryopreservation. Arterial segments were frozen in liquid nitrogen vapors in a controlled rate freezing system. After thawing, samples were processed for routine immunohistochemistry. To standardize immunostaining, flow-cytometry indirect immunofluorescence analysis was performed on HUVEC; immunohistochemistry of human ovarian cortical vessels was performed as an additional positive control. Negative controls were performed by omitting tissue incubation with primary antibodies. HLA-class I antigens were markedly expressed by endothelial cells lining surface intima and adventitial vasa vasorum; a moderate expression was found in medial smooth muscle cells. Except for the surface unreactivity caused by loss of endothelium, results from cryopreserved arterial allografts were strictly comparable to those observed in fresh, unfrozen tissues. These results support the view that cryopreserved arterial allografts are immunogenic as their fresh counterparts; apart from smooth muscle cells which retained a moderate expression of HLA class I antigens following cryopreservation, our study suggests that the highly HC-10 positive endothelial cells we found to line the rich adventitial network of vasa vasorum are expected to be one of the major targets of the serological response in the recipient.

Keywords

HLA class I HC-10 Namb-1 Arterial homograft Immunogenicity Cryopreservation Arterial transplant Immunohistochemistry 

Abbreviations

MoAbs

Monoclonal antibodies

HUVEC

Human umbilical venous endothelial cells

VEGF

Vascular endothelial growth factor

FBS

Fetal bovine serum

Notes

Acknowledgements

This work was partially funded by RFO (ex quota 60%)—Università degli Studi di Bologna, Bologna, Italy and by PRIN 2005—MIUR, Italy

References

  1. Faggioli G, Ricotta JJ (1994) Cryopreserved vein homografts for arterial reconstruction. Eur J Vasc Surg 8:661–669PubMedCrossRefGoogle Scholar
  2. Gabriel M, Pulaski F, Dzieciuchowicz L, Oszhinis G, Checinski P (2004) Cryopreserved arterial allografts in the treatment of prosthetic graft infections. Eur J Vasc Endovasc Surg 27:590–596PubMedCrossRefGoogle Scholar
  3. Hunt CJ, Song YC, Bateson EAJ, Pegg DE (1994) Fractures in cryopreserved arteries. Cryobiology 31:506–515PubMedCrossRefGoogle Scholar
  4. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. J Clin Invest 52 (11):2745–2756PubMedCrossRefGoogle Scholar
  5. Jin Y-P, Singh RP, Du Z-Y, Rajasekaran AK, Rozengurt E, Reed EF (2002) Ligation of HLA class I molecules on endothelial cells induces phopshorylation of Src, paxillin, and focal adhesion kinase in an actin-dependent manner. J Immunol 168: 5415–5423PubMedGoogle Scholar
  6. Langerak SE, Groenink M, van der Wall EE, Wassenaar C, Vanbavel E, van Baal MC, Spaan JAE (2001) Impact of current cryopreservation procedures on mechanical and functional properties of human aortic homografts. Transpl Int 14:248–255PubMedCrossRefGoogle Scholar
  7. Macdonald W, Williams DS, Clements CS, Gorman JJ, Kjer-Nielsen L, Brooks AG, McCluskey J, Rossjohn J, Purcell AW (2002) Identification of a dominant self-ligand bound to three HLA B44 alleles and the preliminary crystallographic analysis of recombinant forms of each complex. FEBS Lett 527(1–3): 27–32PubMedCrossRefGoogle Scholar
  8. Mirandola P, Sponzilli I, Solenghi E, Micheloni C, Rinaldi L, Gobbi G, Vitale M (2006) Down-regolation of human leukocyte antigen class I and II and β2-microglobulin expression in human herpesvirus-7-infected cells. J Infec Dis 193:917–926CrossRefGoogle Scholar
  9. Mirelli M, Buzzi M, Pasquinelli G, Tazzari V, Testi G, Ricchi E, Conte R, Stella A (2005) Fresh and cryopreserved arterial homografts: immunological and clinical results. Transplant Proc 37: 2688–2691PubMedCrossRefGoogle Scholar
  10. Müller-Schweinitzer E, Mihatsch MJ, Schilling M, Haefeli W (1997) Functional recovery of human mesenteric and coronary arteries after cryopreservation at  − 196°C medium. J Vasc Surg 25:743–750PubMedCrossRefGoogle Scholar
  11. Nagasaka S, Taniguchi S, Nakayama Y, Skaguchi H, Nishizaki K, Naito H, Morioka H (2005) In vivo study of the effects of cryopreservation on heart valve xenotransplantation. Cardiovasc Pathol 14:70–79PubMedCrossRefGoogle Scholar
  12. Oei FB, Stegmann AP, van der Ham F, Zondervan PE, Vaessen LM, Baan CC, Weimar W, Bogers AJ (2002) The presence of immune stimulatory cells in fresh and cryopreserved donor aortic and pulmonary valve allografts. J Heart Valve Dis 11:315–324PubMedGoogle Scholar
  13. Pasquinelli G, Foroni L, Buzzi M, Tazzari PL, Vaselli C, Mirelli M, Gargiulo M, Conte R, Stella A (2006) Smooth muscle cell injury after cryopreservation of human thoracic aortas. Cryobiology 52:309–316PubMedCrossRefGoogle Scholar
  14. Pegg DE, Wusteman MC, Boylan S (1997) Fractures in cryopreserved elastic arteries. Cryobiology 34:183–192PubMedCrossRefGoogle Scholar
  15. Pellegrino MA, Ng AK, Russo C, Ferrone S (1982) Heteregeneous distribution of the determinants defined by monoclonal antibodies on HLA-A and B antigens bearing molecules. Transplantation 34:18–23PubMedCrossRefGoogle Scholar
  16. Perosa F, Luccarelli G, Prete M, Favonio E, Ferrone S, Dammacco F (2003) β2-microglobulin-free HLA class I heavy chain epitope mimicry by monoclonal antibody HC-10-specific peptide. J Immunol 171: 1918–1926PubMedGoogle Scholar
  17. Salomon RN, Friedman GB, Callow AD, Payne DD, Libby P (1993) Cryopreserved aortic homografts contain viable smooth muscle cells capable of expressing transplantation antigens. J Thorac Cardiovasc Surg 106:1173–1180PubMedGoogle Scholar
  18. Smith JD, Hornick PI, Rasmi N, Rose ML, Yacoub MH (1998) Effect of HLA mismatching and antibody status on “homovital” aortic valve homograft performance. Ann Thorac Surg 66:S212–S215PubMedCrossRefGoogle Scholar
  19. Solanes N, Rigol M, Castellà M, Khabiri E, Raminez J, Segalés J, Roqué M, Agustì E, Pérez-Villa F, Roig E, Pomar JL, Sanz G, Heras M (2004) Cryopreservation alters antigenicity of allografts in a porcine model of transplant vasculopathy. Trasnplant Proc 36: 3288–3294CrossRefGoogle Scholar
  20. Song YC, Hunt CJ, Pegg DE. (1994) Cryopreservation of the common carotid artery of the rabbit. Cryobiology 31:317–329PubMedCrossRefGoogle Scholar
  21. Song YC, Pegg DE, Hunt CJ (1995) Cryopreservation of the common carotid artery of the rabbit: optimization of dymethyl sulfoxide concentration and cooling rate. Cryobiology 32:405–421PubMedCrossRefGoogle Scholar
  22. Stam NJ, Spits H, Ploegh HL (1986) Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J Immunol 137:2299–2306PubMedGoogle Scholar
  23. Stanke F, Riebel D, Carmine S, Cracowski JL, Caron F, Magne JL, Egelhoffer H, Bessard G, Devillier P (998) Functional assessment of human femoral arteries after cryopreservation. J Vasc Surg 28:273–283CrossRefGoogle Scholar
  24. Teebken OE, Pichlmaier MA, Brand S, Haverich A (2004) Cryopreserved arterial allografts for in situ reconstruction of infected arterial vessels. Eur J Vasc Endovasc Surg 27:597–602PubMedCrossRefGoogle Scholar
  25. Vázquez MER, Rodriguez Carbarcos M, Martínez Santos MV, Fernández Mallo RO et al (2004a) Functional assessment of cryopreserved human aortas for pharmaceutical research. Cell Tissue Bank 5:119–123CrossRefGoogle Scholar
  26. Vázquez MER, Rodriguez Carbarcos M, Fernández Mallo RO et al (2004b) Functional assessment of human femoral arteries after cryopreservation. Cryobiology 49:83–89CrossRefGoogle Scholar
  27. Verghese S, Cherian KM (2002) HLA expression in aortic and pulmonary homografts: effects of cryopreservation. Indian Heart J 54:394–398PubMedGoogle Scholar
  28. Vitale M, Pelusi G, Taroni B, Gobbi G, Micheloni C, Mezzani R, Donato F, Wang X, Ferrone S (2005) HLA class I antigen down-regulation in primary ovary carcinoma lesions: association with disease stage. Clinical Cancer Res 11:67–72Google Scholar
  29. Vogt PR, Stallmach T, Niederhäuser U, Schneider J, Zünd G, Lachat M, Künzli A, Turina MI (1999) Explanted cryopreserved allografts: a morphological and immunohistochemical comparison between arterial allografts and allografts heart valves from infants and adults. Eur J Cardio-Thoracic Sur 15:639–645CrossRefGoogle Scholar
  30. Welters MJ, Oei FB, Vaessen LM, Stegmann AP, Bogers AJ, Weimar W (2001) Increased numbers of circulating donor-specific T helper lymphocytes after human heart valve transplantation. Clin Exp Immunol 124:353–358PubMedCrossRefGoogle Scholar
  31. Welters MJ, Oei FB, Witvliet MD, Vaessen LM, Cromme-Dijkhuis AH, Bogers AJ, Weimar W, Claas FH (2002) A broad and strong humoral immune response to donor HLA after implantation of cryopreserved human heart valve allografts. Hum Immunol 63: 1019–1025PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • G. Pasquinelli
    • 1
    • 4
  • M. P. Pistillo
    • 5
  • F. Ricci
    • 2
  • M. Buzzi
    • 2
  • P. L. Tazzari
    • 2
  • L. Foroni
    • 3
  • C. Manferdini
    • 1
  • C. Ceccarelli
    • 4
  • A. Stella
    • 3
  • R. Conte
    • 2
  1. 1.Clinical Pathology Unit, Department of Experimental Pathology, Policlinico S. OrsolaUniversity of BolognaBolognaItaly
  2. 2.Cardiovascular Tissue Bank, Service of Transfusion Medicine, Policlinico S. Orsola-MalpighiUniversity of BolognaBolognaItaly
  3. 3.Vascular Surgery Unit, Department of Anestesiological and Surgical Sciences, Policlinico S. Orsola-MalpighiUniversity of BolognaBolognaItaly
  4. 4.Surgical Pathology Unit, Clinical Department. of Radiological and Histocytopathological Sciences, Policlinico S. Orsola-MalpighiUniversity of BolognaBolognaItaly
  5. 5.Laboratory of Translational Research ANational Cancer Research InstituteGenovaItaly

Personalised recommendations