Skip to main content
Log in

Multidimensional Scaling by Means of Pseudoinverse Operations

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

This article proposes a method for multidimensional information scaling based on the results of the theory of perturbation of pseudoinverse and projection matrices and solutions of systems of linear algebraic equations. An algorithm is developed for piecewise hyperplane clusterization with the verification of a given criterion of clusterization efficiency. An example of using the method for scaling characteristic features to recognize the letters of the Ukrainian sign language alphabet is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Davison, Multidimensional Scaling [Russian translation], Finance and Statistics, Moscow (1988).

    Google Scholar 

  2. K. V. Vorontsov, Lectures on Algorithms of Clustering and Multidimensional Scaling [in Russian]. URL: http://www.ccas.ru/voron/download/Clustering.pdf (access date March 23, 2018).

  3. M. Zhambyu, Hierarchical Cluster Analysis and Matching [Russian translation], Finance and Statistics, Moscow (1988).

    Google Scholar 

  4. N. F. Kirichenko, Yu. G. Krivonos, and N. P. Lepekha, “Optimization of the synthesis of hyperplane clusters and neurofunctional transforms in signal classification system,” Cybernetics and Systems Analysis, Vol. 44, No. 6, 832–839 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. F. Kirichenko, Yu. G. Krivonos, and N. P. Lepekha, “Synthesis of systems of neurofunctional transformations in classification problems,” Cybernetics and Systems Analysis, Vol. 43, No. 3, 353–361 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. N. F. Kirichenko and V. S. Donchenko, “Pseudoinverse in clustering problems,” Cybernetics and Systems Analysis, Vol. 43, No. 4, 527–541 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  7. N. F. Kirichenko and G. I. Kudin, “Analysis and synthesis of signal classification systems by perturbing pseudoinverse and projection operations,” Cybernetics and Systems Analysis, Vol. 45, No. 4, 613–622 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. Iu. V. Krak, Iu. G. Kryvonos, O. V. Barmak, and A. S. Ternov, “An approach to the determination of efficient features and synthesis of an optimal band-separating classifier of dactyl elements of sign language,” Cybernetics and Systems Analysis, Vol. 52, No. 2, 173–180 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. I. V. Sergienko, A. N. Khimich, and M. F. Yakovlev, “Methods for obtaining reliable solutions to systems of linear algebraic equations,” Cybernetics and Systems Analysis, Vol. 47, No. 1, 62–73 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. N. Khimich and E. A. Nikolaevskaya, “Reliability analysis of computer solutions of systems of linear algebraic equations with approximate initial data,” Cybernetics and Systems Analysis, Vol. 44, No. 6, 863–874 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. A. Nikolaevskaya and A. N. Khimich, “Error estimation for a weighted minimum-norm least squares solution with positive definite weights,” Computational Mathematics and Mathematical Physics, Vol. 49, No. 3, 409–417 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Penrose, “A generalized inverse for matrices,” in: Proc. Cambridge Philosophical Society, Vol. 51, 406–413 (1955).

  13. D. Forsythe, M. Malcolm, and K. Mouler, Machine Methods of Mathematical Calculations [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  14. A. Ben-Israel and T. N. E. Greville, Generalized Inverse: Theory and Applications, 2nd Edition, Springer, New York (2003).

    MATH  Google Scholar 

  15. N. F. Kirichenko, “Analytical representation of perturbations of pseudoinverse matrices,” Cybernetics and Systems Analysis, Vol. 33, No. 2, 230–238 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu. G. Krivonos, M. F. Kirichenko, Yu. V. Krak, V. S. Donchenko, and A. I. Kulyas, Analysis and Synthesis of Situations in Decision Support Systems [in Ukrainian], Naukova Dumka, Kyiv (2009).

    Google Scholar 

  17. N. F. Kirichenko, Yu. V. Krak, and A. A. Polishchuk, “Pseudoinverse and projection matrices in problems of synthesis of functional transformers,” Cybernetics and Systems Analysis, Vol. 40, No. 3, 407–419 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  18. Iu. G. Kryvonos, Iu. V. Krak, O. V. Barmak, and D. V. Shkilniuk, “Construction and identification of elements of sign communication,” Cybernetics and Systems Analysis, Vol. 49, No. 2, 163–172 (2013).

    Article  Google Scholar 

  19. Iu. G. Kryvonos, Yu. V. Krak, Yu. V. Barchukova, and B. A. Trotsenko, “Human hand motion parametrization for dactylemes modeling,” Journal of Automation and Information Sciences, Vol. 43, Iss. 12, 1–11 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iu. V. Krak.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 1, January–February, 2019, pp. 30–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krak, I.V., Kudin, G.I. & Kulyas, A.I. Multidimensional Scaling by Means of Pseudoinverse Operations. Cybern Syst Anal 55, 22–29 (2019). https://doi.org/10.1007/s10559-019-00108-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-019-00108-9

Keywords

Navigation