Advertisement

Cybernetics and Systems Analysis

, Volume 52, Issue 1, pp 76–84 | Cite as

Complexity of One Packing Optimization Problem

  • O. M. Trofymchuk
  • V. A. Vasyanin
  • V. N. Kuzmenko
Article

Abstract

The authors consider packing optimization for elements of a square matrix, which are given by positive integers, into blocks of fixed size. The problem is formulated and its combinatorial intractability is discussed. The problem is proved to be NP-complete. This is done by polynomial reduction of an NP-complete minimum-cost integer multicommodity flow problem to this problem.

Keywords

packing optimization integer multicommodity flow labor input of exhaustive search polynomial reducibility NP-complete problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Trofimchuk and V. A. Vasyanin, “A technique to solve packing problem for the management of perspective development of communication network nodes,” Cybern. Syst. Analysis, 50, No. 4, 560–569 (2014).CrossRefMATHGoogle Scholar
  2. 2.
    A. N. Trofimchuk and V. A. Vasyanin, “Simulation of packing, distribution, and routing of small-size discrete flows in a multicommodity network,” J. Autom. Inform. Sci., 47, No. 7, 15–30 (2015).CrossRefGoogle Scholar
  3. 3.
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Series of Books in the Mathematical Sciences, W. H. Freeman (1979).Google Scholar
  4. 4.
    S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and multicommodity flow problems,” SIAM J. Comput., 5, 691–703 (1976).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, Inc., Upper Saddle River (NJ) (1993).Google Scholar
  6. 6.
    C. Barnhart, C. A. Hane, and P. H. Vange, “Using branch-and-price-and-cut to solve origin destination integer multicommodity flow problems,” Oper. Research, 48, No. 2, 318–326 (2000).CrossRefGoogle Scholar
  7. 7.
    C. Barnhart, N. Krishnan, and P. H. Vange, “Multicommodity flow problems,” in: C. A. Floudas and P. M. Pardalos (eds.), Encyclopedia of Optimization, Springer, New York (2009), pp. 2354–2362.CrossRefGoogle Scholar
  8. 8.
    V. A. Vasyanin, “A reference matrix of confluence of flows in packing optimization problems on multicommodity networks,” Syst. Doslidzh. ta Informats. Tekhnologii, No. 3, 42–49 (2014).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • O. M. Trofymchuk
    • 1
  • V. A. Vasyanin
    • 1
  • V. N. Kuzmenko
    • 2
  1. 1.Institute of Telecommunications and Global Information SpaceNational Academy of Sciences of UkraineKyivUkraine
  2. 2.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations