Cybernetics and Systems Analysis

, Volume 50, Issue 6, pp 884–889 | Cite as

Analysis of Integrated Cellular Network Model with Virtual Partitioning of Channels*

  • A. Z. Melikov
  • L. A. Ponomarenko
  • G. M. Velidzanova


We propose a new admission strategy in integrated cellular networks based on virtual partitioning of channels between voice and data calls. Access of new data calls to channels is restricted depending on the total number of data calls in the cell. A method is developed to calculate the quality of service metrics of the partitioning scheme.


cellular network virtual channel partitioning call admission control quality of service 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. P. Basharin, K. E. Samouylov, N. V. Yarkina, and I. A. Gudkova, “A new stage in mathematical teletraffic theory,” Autom. Remote Control., 70, No. 12, 1954–1964 (2009).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    M. Schneps-Schneppe and V. B. Iversen, “Call admission control in cellular networks,” in: J. H. Ortiz (ed.), Mobile Networks Intech. (2012), pp. 111–136.Google Scholar
  3. 3.
    G. H. S. Carvalho, V. S. Martins, C. R. L. Frances, J. C. W. A. Costa, and S. V. Carvalho, “Performance analysis of multi-service wireless network: An approach integrating CAC, scheduling, and buffer management,” Comput. & Electr. Engin., 34, 346–356 (2008).CrossRefMATHGoogle Scholar
  4. 4.
    Ya. J. Oh, C. S. Kim, A. Z. Melikov, and M. I. Fattakhova, “Numerical analysis of multiparameter strategy of access in multiservice wireless cellular communication networks,” Autom. Remote Control, 71, No. 12, 2558–2572 (2010).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Che Soong Kim, A. Z. Melikov, and L. A. Ponomarenko, “Numerical investigation of a multithreshold access strategy in multiservice cellular wireless networks,” Cybern. Syst. Analysis, 45, No. 5, 680–691 (2009).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    G. P. Basharin, The Mathematical Theory of Teletraffic [in Russian], RUDN, Moscow (2004).Google Scholar
  7. 7.
    H. Akimura and M. Kawashima, Teletraffic: Theory and Applications, Springer-Verlag, London (1999).CrossRefGoogle Scholar
  8. 8.
    J. N. Daigle, Queueing Theory with Applications to Packet Telecommunication, Springer, Boston (2005).Google Scholar
  9. 9.
    L. Ponomarenko, C. S. Kim, and A. Melikov, Performance Analysis and Optimization of Multi-Traffic on Communication Networks, Springer, Heidelberg–Dordrecht–London–New York (2010).CrossRefMATHGoogle Scholar
  10. 10.
    M. Stasiak, M. Glabowski, A. Wishniewski, and P. Zwierzykowski, Modeling and Dimensioning of Mobile Networks: From GSM to LTE, John Wiley, New York (2011).Google Scholar
  11. 11.
    L. Lakatos, L. Szeidl, and M. Telek, Introduction to Queueing Systems with Telecommunication Applications, Springer, New York–Heidelberg–Dordrecht–London (2013).CrossRefMATHGoogle Scholar
  12. 12.
    W. Feng and M. Kowada, “Performance analysis of wireless mobile networks with queueing priority and guard channels,” Intern. Trans. in Oper. Research., 15, 481–508 (2008).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    A. Z. Melikov, M. I. Fattakhova, and A. T. Babayev, “Investigation of cellular communication networks with private channels for service of handover calls,” Autom. Control and Comput. Sci., 39, No. 3, 61–69 (2005).Google Scholar
  14. 14.
    F. P. Kelly, Reversibility and Stochastic Networks, John Wiley & Sons, New York (1979).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Z. Melikov
    • 1
  • L. A. Ponomarenko
    • 2
  • G. M. Velidzanova
    • 1
  1. 1.Institute of CyberneticsAzerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.The International Research and Training Center for Information Technologies and Systems, National Academy of Sciences of Ukraine and Ministry of Education and Science of UkraineKyivUkraine

Personalised recommendations